JoVE Logo
Faculty Resource Center

Sign In

Abstract

Immunology and Infection

Isolation, Fixation, and Immunofluorescence Imaging of Mouse Adrenal Glands

Published: October 2nd, 2018

DOI:

10.3791/58530

1Department of Internal Medicine (Division of Metabolism, Endocrinology, and Diabetes), University of Michigan Health System, 2Department of Cell and Developmental Biology, University of Michigan Health System, 3Department of Molecular and Integrative Physiology, University of Michigan Health System, 4Endocrine Oncology Program, University of Michigan Health System, 5Comprehensive Cancer Center, University of Michigan Health System

Immunofluorescence is a well-established technique for detection of antigens in tissues with the employment of fluorochrome-conjugated antibodies and has a broad spectrum of applications. Detection of antigens allows for characterization and identification of multiple cell types. Located above the kidneys and encapsulated by a layer of mesenchymal cells, the adrenal gland is an endocrine organ composed by two different tissues with different embryological origins, the mesonephric intermediate mesoderm-derived outer cortex and the neural crest-derived inner medulla. The adrenal cortex secretes steroids (i.e., mineralocorticoids, glucocorticoids, sex hormones), whereas the adrenal medulla produces catecholamines (i.e., adrenaline, noradrenaline). While conducting adrenal research, it is important to be able to distinguish unique cells with different functions. Here we provide a protocol developed in our laboratory that describes a series of sequential steps required for obtaining immunofluorescence staining to characterize the cell types of the adrenal gland. We focus first on the dissection of the mouse adrenal glands, the microscopic removal of periadrenal fat followed by the fixation, processing and paraffin embedding of the tissue. We then describe sectioning of the tissue blocks with a rotary microtome. Lastly, we detail a protocol for immunofluorescent staining of adrenal glands that we have developed to minimize both non-specific antibody binding and autofluorescence in order to achieve an optimal signal.

Tags

Keywords Immunofluorescence

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved