Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a protocol to construct a pleural effusion model in rats by intratracheal instillation of polyacrylate/nanosilica.

Abstract

Pleural effusion is a prevalent clinical finding of many pulmonary diseases. Having a useful animal pleural effusion model is very important to study these pulmonary diseases. Previous pleural effusion models paid more attention to biological factors rather than nanoparticles in the environment. Here, we introduce a model to make pleural effusion in rats by intratracheal instillation of polyacrylate/nanosilica, and a method of nanoparticle isolation in the pleural effusion. By intratracheal instillation of polyacrylate/nanosilica with concentrations of 3.125, 6.25 and 12.5 mg/kg∙mL, the pleural effusion in rats presented on day 3, peaked at days 7-10 in 6.25 and 12.5 mg/kg∙mL groups, then slowly decreased and disappeared on day 14. When the concentration of polyacrylate/nanosilica increased, the pleural effusion is produced more and faster. This pleural fluid was detected by ultrasound examination or CT chest scanning and confirmed by dissection of rats. Silica nanoparticles were observed in the rats' pleural effusion by transmission electron microscope. These results showed that the exposure to polyacrylate/nanosilica leads to the induction of pleural effusion, which was consistent with our previous report in humans. Additionally, this model is beneficial for the further study of nanotoxicology and the pleural effusion diseases.

Introduction

Pleural effusion is a very common clinical manifestation of pulmonary diseases with a variety of causes. Having a useful animal pleural effusion model is very important to study these pulmonary diseases, the roles of the two pleural membrane layers, the mechanisms of pleural effusion, and its treatment. However, some reported pleural effusion models mainly focus on the malignant pleural effusion or biological factors rather than the nanoparticles in the environment1,2. Here, we introduce a new model of pleural effusion that is simple, safe and effective.

With the development of nano....

Protocol

The study followed guidelines of Capital Medical University (Beijing, P.R China) for the care and use of experimental animals. All procedures were approved by the Animal Ethical Committee of Capital Medical University in China.

1. Experimental preparations

NOTE: Acclimate the female specific pathogen-free Wistar rats (weight: 200 ± 10 g) to the experimental environments for a week before administration (Environmental conditions: light/dark:12h/12h, temperature 22.......

Representative Results

Using a thoracic ultrasound, we found no pleural effusions on day 1 in all groups. However, on day 3, the pleural effusion appeared in the 6.25 and 12.5 mg/kg∙mL groups. The effusion was mainly in the right costal phrenic angle, while the pericardial effusion only presented in 12.5 mg/kg∙mL group. Furthermore, on day 7, both pleural effusion (Video 1) and pericardial effusion (Video 2) were detected in 6.25 mg/kg∙mL group (

Discussion

Sonography is the most convenient tool for determining pulmonary diseases, due to its excellent sensitivity to the free fluid in the pleural cavity11. That is because sonography can immediately detect the contrast in acoustic impedance of air and fluids in the lung12. Besides, sonography is more flexible in a small animal's model than CT. Nevertheless, the air in the lung reflected the sound wave and impeded from observing the intrapulmonary changes after nanoparticles .......

Acknowledgements

The present study and production to this article were funded by the National Natural Science Foundation of China (Grant 81773373, 81172614 and Grant 81441089). We thank Dr. Jin Yan and Dr. Pan Yujie, of Department of Emergency, Beijing Chaoyang Hospital, and Dr. Qu Peng of Department of Ultrasound Medicine, Beijing Chaoyang Hospital for helping with the video production. 

....

Materials

NameCompanyCatalog NumberComments
Acuson S2000 Color Doppler ultrasound systemSiemens Medical Solutions, Mountain View ,CA
 Polyacrylate/nanosilicaFudan University,Shanghai, Chinamade by order with nanosilica(20±5)nm
10% chloral hydrateBeijing Chemical Works302-17-0
Transmission electron microscope JEM-1400Plus,JEOL Ltd., Japan.
Light speed 16 spiral computed tomographyGE Healthcare, US
Specific pathogen-free WistarAnimal Center of Lianhelihua (Beijing, China)Wistar rats

References

  1. Stathopoulos, G. T., et al. Nuclear factor-kappaB affects tumor progression in a mouse model of malignant pleural effusion. American Journal of Respiratory Cell and Molecular Biology. 34 (2), 142-150 (2006).
  2. Shen, J., et al.

Explore More Articles

Pleural EffusionPolyacrylateNanosilicaIntratracheal InstillationPulmonary ToxicityNanomaterialsUltrasoundCT ScanTransmission Electron Microscopy

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved