JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Neuroscience

The Power of Interstimulus Interval for the Assessment of Temporal Processing in Rodents

Published: April 19th, 2019

DOI:

10.3791/58659

1Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina

Temporal processing, a preattentive process, may underlie deficits in higher-level cognitive processes, including attention, commonly observed in neurocognitive disorders. Using prepulse inhibition as an exemplar paradigm, we present a protocol for manipulating interstimulus interval (ISI) to establish the shape of the ISI function to provide an assessment of temporal processing.

Temporal processing deficits have been implicated as a potential elemental dimension of higher-level cognitive processes, commonly observed in neurocognitive disorders. Despite the popularization of prepulse inhibition (PPI) in recent years, many current protocols promote using a percent of control measure, thereby precluding the assessment of temporal processing. The present study used cross-modal PPI and gap prepulse inhibition (gap-PPI) to demonstrate the benefits of employing a range of interstimulus intervals (ISIs) to delineate effects of sensory modality, psychostimulant exposure, and age. Assessment of sensory modality, psychostimulant exposure, and age reveals the utility of an approach varying the interstimulus interval (ISI) to establish the shape of the ISI function, including increases (sharper curve inflections) or decreases (flattening of the response amplitude curve) in startle amplitude. Additionally, shifts in peak response inhibition, suggestive of a differential sensitivity to the manipulation of ISI, are often revealed. Thus, the systematic manipulation of ISI affords a critical opportunity to evaluate temporal processing, which may reveal the underlying neural mechanisms involved in neurocognitive disorders.

Temporal processing deficits have been implicated as a potential underlying neural mechanism for alterations in higher-level cognitive processes commonly observed in neurocognitive disorders. Prepulse inhibition (PPI) of the auditory startle response (ASR) is a translational experimental paradigm commonly used to examine temporal processing deficits, revealing profound alterations in neurocognitive disorders such as schizophrenia1, attention deficit hyperactivity disorder2 and HIV-1 associated neurocognitive disorders3,4. Specifically, assessments of temporal pro....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All animal protocols were reviewed and approved by the Animal Care and Use Committee at the University of South Carolina (federal assurance number: D16-00028).

1. Defining Parameters and Calibration of the Startle Apparatus

  1. Set up the startle response system (see Table of Materials) according to the manufacturer’s instructions.
    1. Enclose the startle platform in a 10 cm-thick double-walled isolation cabinet.

    Log in or to access full content. Learn more about your institution’s access to JoVE content here

A prominent non-monotonic ISI function was observed in cross-modal PPI (Figures 2A, 3A, 4A) and gap-PPI (Figures 2B, 3B, 4B). Baseline startle responses were observed at the 0 and 4000 ms ISIs, included as reference trials within a test session. The importance of the 4000 ms ISI cannot be understated, as it most closely resembles the PPI test trials (i.e., 30, 50, 100, 200 ms ISIs) in that the subject receives both the prepulse and startling stim.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The present protocol describes the power of varying ISI for the assessment of temporal processing for studies employing either cross-sectional or longitudinal experimental designs. Examining the effects of sensory modality, psychostimulant exposure, or age on the shape of the ISI function demonstrated its utility in revealing a differential sensitivity to the manipulation of ISI (i.e., shifts in the point of maximal inhibition) or a relative insensitivity to the manipulation of ISI (i.e., sharper inflec.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported in part by grants from NIH (National Institute on Drug Abuse, DA013137; National Institute of Child Health and Human Development HD043680; National Institute of Mental Health, MH106392; National Institute of Neurological Diseases and Stroke, NS100624) and the interdisciplinary research training program supported by the University of South Carolina Behavioral-Biomedical Interface Program. Dr. Landhing Moran is currently a Scientific Officer at the NIDA Center for Clinical Trials Network.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
SR-Lab Startle Response System San Diego Instruments
Isolation Cabinet Industrial Acoustic Company
SR-Lab Startle Calibration System San Diego Instruments
High-Frequency Loudspeaker Radio Shack model #40-1278B
Sound Level Meter Bruel & Kjaer model #2203
Perspex Cylinder San Diego Instruments Included with the SR-Lab Startle Response System
SR-Lab Startle Response System Software San Diego Instruments Included with the SR-Lab Startle Response System
Light Meter Sper Scientific, Ltd. model #840006
Airline Regulator Craftsman model #16023
SPSS Statistics 24 IBM Used for Statistical Analyses (Optional)

  1. Braff, D., Stone, C., Callaway, E., Geyer, M., Glick, I., Bali, L. Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology. 15 (4), 339-343 (1978).
  2. Castellanos, F. X., Fine, E. J., Kaysen, D., Marsh, W. L., Rapoport, J. L., Hallett, M. Sensorimotor gating in boys with Tourette's Syndrome and ADHD: Preliminary results. Biological Psychiatry. 39 (1), 33-41 (1996).
  3. Moran, L. M., Booze, R. M., Mactutus, C. F. Time and time again: Temporal processing demands implicate perceptual and gating deficits in the HIV-1 transgenic rat. Journal of Neuroimmune Pharmacology. 8 (4), 988-997 (2013).
  4. McLaurin, K. A., Moran, L. M., Li, H., Booze, R. M., Mactutus, C. F. A gap in time: Extending our knowledge of temporal processing deficits in the HIV-1 transgenic rat. Journal of Neuroimmune Pharmacology. 12 (1), 171-179 (2017).
  5. McLaurin, K. A., Booze, R. M., Mactutus, C. F. Progression of temporal processing deficits in the HIV-1 transgenic rat. Scientific Reports. 6, 32831 (2016).
  6. McLaurin, K. A., Booze, R. M., Mactutus, C. F. Temporal processing demands in the HIV-1 transgenic rat: Amodal gating and implications for diagnostics. International Journal of Developmenta Neuroscience. 57, 12-20 (2017).
  7. Sechenov, I. M. . Reflexes of the Brain. , (1965).
  8. Yerkes, R. M. The sense of hearing in frogs. Journal of Comparative Neurology and Psychology. 15, 279-304 (1905).
  9. Bowditch, H. P., Warren, J. W. The knee-jerk and its physiological modifications. Journal of Physiology. 11, 25-64 (1890).
  10. Cohen, L. H., Hilgard, E. R., Wendt, G. R. Sensitivity to light in a case of hysterical blindness studied by reinforcement-inhibition and conditioning methods. Yale Journal of Biology and Medicine. 6, 61-67 (1933).
  11. Hoffman, H. S., Searle, J. L. Acoustic variables in the modification of startle reaction in the rat. Journal of Comparative and Physiological Psychology. 60, 53-58 (1965).
  12. Hoffman, H. S., March, R. R., Stein, N. Persistence of background acoustic stimulation in controlling startle. Journal of Comparative and Physiological Psychology. 68 (2), 280-283 (1969).
  13. Ison, J. R., Hammond, G. R. Modification of the startle reflex in the rat by changes in the auditory and visual environments. Journal of Comparative and Physiological Psychology. 75 (3), 435-452 (1971).
  14. Moran, L. M., Hord, L. L., Booze, R. M., Harrod, S. B., Mactutus, C. F. The role of sensory modality in prepulse inhibition: An ontogenetic study. Developmental Psychobiology. 58 (2), 211-222 (2016).
  15. McLaurin, K. A., Booze, R. M., Mactutus, C. F. Evolution of the HIV-1 transgenic rat: Utility in assessing the progression of HIV-1-associated neurocognitive disorders. Journal of Neurovirology. 24 (2), 229-245 (2018).
  16. Hoffman, H. S., Ison, J. R. Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychological Review. 87 (2), 175-189 (1980).
  17. Ison, J. R., Agrawal, P., Pak, J., Vaughn, W. J. Changes in temporal acuity with age and with hearing impairment in the mouse: A study of the acoustic startle reflex and its inhibition by brief decrements in noise level. The Journal of the Acoustical Society of America. 104, 1696-1704 (1998).
  18. . Startle response: Acoustic startle reflex response 101 Available from: https://mazeengineers.com/acoustic-startle-response/ (2014)
  19. Curzon, P., Zhang, M., Radek, R. J., Fox, G. B., Buccafusco, J. J. The behavioral assessment of sensorimotor processes in the mouse: Acoustic startle, sensory gating, locomotor activity, rotarod, and beam walking. Methods of behavior analysis in neuroscience. , (2009).
  20. Geyer, M. A., Swerdlow, N. R. Measurement of startle response, prepulse inhibition, and habituation. Current Protocols in Neuroscience. , (2001).
  21. Parisi, T., Ison, J. R. Development of the acoustic startle response in the rat: Ontogenetic changes in the magnitude of inhibition by prepulse stimulation. Developmental Psychobiology. 12 (3), 219-230 (1979).
  22. Tabachnick, B. G., Fidell, L. S. . Experimental designs using ANOVA. , (2007).
  23. Bliss, C. I. The transformation of percentage for use in the analysis of variance. Ohio Journal of Science. 38, 9-12 (1938).
  24. Bartlett, M. S. The use of transformations. Biometrics. 3, 39-52 (1947).
  25. Cochran, W. G. The analysis of variance when experimental errors follow the poisson or bimodal laws. Annals of Mathematical Sciences. 11, 335-347 (1940).
  26. Greenhouse, S. W., Geisser, S. On methods in the analysis of profile data. Psychometrika. 24, 95-112 (1959).
  27. Fendt, M., Li, L., Yeomans, J. S. Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacology (Berl). 156 (2-3), 216-224 (2001).
  28. Koch, M., Schnitzler, H. U. The acoustic startle response in rats: Circuits mediating evocation, inhibition and potentiation. Behavioural Brain Research. 89 (1-2), 35-49 (1997).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved