A subscription to JoVE is required to view this content. Sign in or start your free trial.
Double-stranded RNA produced during RNA virus replication can be recognized by pattern recognition receptors to induce an innate immune response. For negative-sense RNA viruses, the interaction between the low-level dsRNA and PRRs remains unclear. We have developed a confocal microscopy method to visualize arenavirus dsRNA and PRR in individual cells.
Double-stranded (ds) RNA is produced as a replicative intermediate during RNA virus infection. Recognition of dsRNA by host pattern recognition receptors (PRRs) such as the retinoic acid (RIG-I) like receptors (RLRs) RIG-I and melanoma differentiation-associated protein 5 (MDA-5) leads to the induction of the innate immune response. The formation and intracellular distribution of dsRNA in positive-sense RNA virus infection has been well characterized by microscopy. Many negative-sense RNA viruses, including some arenaviruses, trigger the innate immune response during infection. However, negative-sense RNA viruses were thought to produce low levels of dsRNA, which hinders the imaging study of PRR recognition of viral dsRNA. Additionally, infection experiments with highly pathogenic arenaviruses must be performed in high containment biosafety level facilities (BSL-4). The interaction between viral RNA and PRRs for highly pathogenic RNA virus is largely unknown due to the additional technical challenges that researchers need to face in the BSL-4 facilities. Recently, a monoclonal antibody (Mab) (clone 9D5) originally used for pan-enterovirus detection has been found to specifically detect dsRNA with a higher sensitivity than the traditional J2 or K1 anti-dsRNA antibodies. Herein, by utilizing the 9D5 antibody, we describe a confocal microscopy protocol that has been used successfully to visualize dsRNA, viral protein and PRR simultaneously in individual cells infected by arenavirus. The protocol is also suitable for imaging studies of dsRNA and PRR distribution in pathogenic arenavirus infected cells in BSL4 facilities.
The initial step of the induction of the innate immune response is host recognition of double-stranded (ds) RNA by the pattern recognition receptors (PRRs) such as the retinoic acid (RIG-I) like receptors (RLRs) RIG-I and melanoma differentiation-associated protein 5 (MDA-5)1. For positive-sense RNA viruses, dsRNA can usually be readily detected using the J2 or K1 anti-dsRNA monoclonal antibodies (Mab)2. Interaction between dsRNA and PRRs in positive-strand RNA viruses, such as picornavirus, has been characterized using confocal microscopy3. However, for negative-sense RNA virus, visualization and....
1. Preparation of A549 cells and JUNV infection
This protocol was applied to study the distribution and colocalization between the RLRs (RIG-I and MDA-5) and dsRNA in JUNV-infected cells. As shown in Figure 1 and Figure 2, the accumulation of dsRNA increases over time as viral infection progresses. Concentrated MDA-5 (Figure 1) and RIG-I (Figure 2) signals were found colocalized with the punctate structures of the NP .......
For positive-sense RNA viruses and dsDNA viruses, dsRNA is readily detected with the widely-used J2 anti-dsRNA antibody. However, negative-sense RNA viruses are believed to produce dsRNA at a low or below the detection level using the same antibody2. Thus, many aspects of viral RNA and PRR interaction are largely unclear for negative-sense RNA viruses. We attempted to stain for dsRNA in arenavirus infection using the J2 antibody but the fluorescence signals were not differentiable compared to the .......
We would like to thank the UTMB imaging core facilities and Maxim Ivannikov for microscope assistance.
This work was supported by Public Health Service grant RO1AI093445 and RO1AI129198 awarded to SP, UTMB Commitment Fund P84373 to CH, and T32 AI007526 to EM.
....Name | Company | Catalog Number | Comments |
APEX Alexa Fluor 647 antibody labeling kit | Invitrogen | A10475 | |
BSA | Sigma Aldrich | A4503 | |
DAPI | Cell Signaling | 4083 | 1:1,000 dilution |
Donkey-anti rabbit Alexa Fluor 594 | Invitrogen | A-11058 | 1:2,000 dilution; Lot #: 1454437 |
Dulbecco's modified Eagle's medium | Corning | 10-013-CV | |
Fetal Bovine Serum | Atlanta Bio | S11150 | |
Glass microscope slides | Fisher | 12-550-15 | |
Goat-anti mouse Alexa Fluor 488 | Invitrogen | A-11029 | 1:2000 dilution; Lot #: 1874804 |
Human lung epithelial A549 cells | ATCC | CCL-185 | |
Methanol | Fisher | A412 | Stored at -20 °C |
Mouse MAb anti-JUNV NP | BEI | NA05-AG12 | Conjugated to Alexa-647 at 1:1,000 dilution |
Mouse MAb pan-Enterovirus 9D5 Reagent | Millipore Sigma | 3361 | ready for use; diluted to 1:2; Lot #: 3067445 |
PBS supplemented with Ca and Mg | Corning | 21-030-CV | |
PDL Coated coverslips | Neuvitro | H-12-1.5-pdl | |
ProLong Gold antifade | Invitrogen | P10144 | |
Rabbit MAb MDA-5 | Abcam | ab126630 | 1:250 dilution; Lot #: GR97758-7 |
recombiant Candid#1 strain of JUNV | Lab generated | Lab generated | As previously described in reference 13. |
RIG-I mouse MAb conjugated to Alexa-594 | Santa Cruz | sc-376845 | 1:1000 dilution; Lot #: AO218 |
Triton X-100 | Sigma Aldrich | T8787 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved