Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Graft stenosis poses a critical obstacle in tissue engineered airway replacement. To investigate cellular mechanisms underlying stenosis, we utilize a murine model of tissue engineered tracheal replacement with seeded bone marrow mononuclear cells (BM-MNC). Here, we detail our protocol, including scaffold manufacturing, BM-MNC isolation, graft seeding, and implantation.

Abstract

Treatment options for congenital or secondary long segment tracheal defects have historically been limited due to an inability to replace functional tissue. Tissue engineering holds great promise as a potential solution with its ability to integrate cells and signaling molecules into a 3-dimensional scaffold. Recent work with tissue engineered tracheal grafts (TETGs) has seen some success but their translation has been limited by graft stenosis, graft collapse, and delayed epithelialization. In order to investigate the mechanisms driving these issues, we have developed a mouse model for tissue engineered tracheal graft implantation. TETGs were constructed using electrospun polymers polyethylene terephthalate (PET) and polyurethane (PU) in a mixture of PET and PU (20:80 percent weight). Scaffolds were then seeded using bone marrow mononuclear cells isolated from 6-8 week-old C57BL/6 mice by gradient centrifugation. Ten million cells per graft were seeded onto the lumen of the scaffold and allowed to incubate overnight before implantation between the third and seventh tracheal rings. These grafts were able to recapitulate the findings of stenosis and delayed epithelialization as demonstrated by histological analysis and lack of Keratin 5 and Keratin 14 basal epithelial cells on immunofluorescence. This model will serve as a tool for investigating cellular and molecular mechanisms involved in host remodeling.

Introduction

Long-segment tracheal defects can present as rare congenital conditions such as complete tracheal rings and tracheal agenesis, as well as trauma, malignancy, and infection. When exceeding 6 cm in adults or 30% of the tracheal length in children, these defects cannot be treated by surgical reconstruction. Attempts to replace the airway with autologous tissue, cadaveric transplants, and artificial constructs have been plagued by chronic infection, granulation, mechanical failure, and stenosis.

Tissue engineered tracheal grafts (TETGs) can potentially address these problems while avoiding the need for life-long immunosuppression. In the last d....

Protocol

All methods described here have been approved by the Institutional Animal Care and Use Committee (IACUC) at Nationwide Children's Hospital.

1. Scaffold Manufacturing

  1. Prepare a polymer nanofiber precursor solution by: 1) dissolving 8 wt% PET in 1,1,1,3,3,3-hexafluoroisopropanol and heating the solution to 60 °C and by 2) dissolving 3 wt% PU in 1,1,1,3,3,3-hexafluoroisopropanol at room temperature.
  2. Once cooled, combine the solutions to create a final polymer mixtur.......

Representative Results

Figure 1 illustrates a schematic of TETG seeding and implantation. Bone marrow was harvested from C57BL/6 mice and cultured in vitro. BM-MNCs were isolated by density centrifugation and seeded onto the TETG. Seeded TETGs were implanted into a syngeneic C57BL/6 recipient mouse.

Figure 2 is an overview of the PET:PU TETG scaffold manufacturing process. PET:PU sol.......

Discussion

Development of a mouse model for tissue engineered tracheas is essential in understanding the factors that have limited clinical translation of the TETGs; namely graft collapse, stenosis and delayed epithelialization4. A few factors that contribute to these limitations include selection of graft material, the manufacturing process, scaffold design and cell seeding protocols. This model allows for faster evaluation of these factors in order to understand the cellular and molecular mechanisms affect.......

Acknowledgements

We would like to acknowledge Robert Strouse and the Research Information Solutions & Innovations division at Nationwide Children's Hospital for their support in graphic design. This work was supported by a grant from the NIH (NHLBI K08HL138460).

....

Materials

NameCompanyCatalog NumberComments
0.9% Sodium chloride injectionAPP PharmaceuticalsNDC 63323-186-10
10cc serological pipetFalcon357551
18G 1.5in. NeedleBD305190
1mL SyringeBD309659
24-well plateCorning3526
25cc serological pipetFalcon356535
25G 1in. NeedleBD305125
50cc tubeBD352070
Alcohol prep padsFisher HealthcareNDC 69250-661-02
Baytril (enrofloxacin) solutionBayer Healthcare, LLCNDC 0859-2267-01
Black polyamide monofilament suture, 9-0AROSurgical Instruments CorporationT05A09N10-13
C57BL/6, femaleJackson laboratories6646-8 weeks old
Citrate Buffer pH 6.0 20x concentrateThermoFisher5000
Colibri retractorsF.S.T17000-04
Cotton tipped applicatorsFisher scientific23-400-118
Cytokeratin 14 Monoclonal AntibodyThermoFisherMA5-11599
Dumont #5 ForcepsF.S.T11251-20
Dumont #5/45 forcepsF.S.T11251-35
Dumont #7 - Fine ForcepsF.S.T11274-20
F4/80 Rat anti-mouse antibodyBio-RadMCA497R
FicollSigma10831-100mL
Fine scissors- Sharp-bluntF.S.T14028-10
Fisherbrand Premium Cover GlassesThermoFisher12-548-5M
Fluoroshield Mounting Media with DAPIAbcamab104139
Goat-anti mouse IgG Secondary Antibody Alexa Fluor 594ThermoFisherA-11001
Goat-anti Rabbit IgG Secondary Antibody Alexa Fluor 594ThermoFisherA-11012
Goat-anti Rat IgG Secondary Antibody Alexa Fluor 647ThermoFisherA-21247
IbuprofenPrecision Dose, IncNDC 68094-494-59
Iodine prep padsProfessional disposables international, Inc.NDC 10819-3883-1
Keratin 5 Polyclonal Antibody, PurifiedBioLegend905501
Ketamine hydrochloride injectionHospira Inc.NDC 0409-2053
Micro-Adson forcepsF.S.T11018-12
MicroscopeLeicaM80
Non-woven spongesCovidien441401
Opthalmic ointmentDechra Veterinary productsNDC 17033-211-38
PBSGibco10010-023
PET/PU (Polyethylene terephthalate & Polyurethane) scaffoldsNanofiber solutionsCustom ordered
Petri dishBD353003
RPMI 1640 MediumGibco11875-093
TISH Needle Holder/ForcepsMicrinsMI1540
TrimmerWahl9854-500
Vannas-Tübingen Spring ScissorsF.S.T15008-08
Warm water recirculatorGaymarTP-700
Xylazine sterile solutionAkorn animal healthNDC 59399-110-20

References

  1. Macchiarini, P., et al. Clinical transplantation of a tissue-engineered airway. The Lancet. 372 (9655), 2023-2030 (2008).
  2. Jungebluth, P., et al. Tracheobronchial transplantation with a st....

Explore More Articles

Tissue engineered Tracheal GraftMouse ModelOrthotopic Tracheal ReplacementAirway RegenerationScaffoldElectrospinningPolyethylene Terephthalate PETPolyurethane PUMicrosurgical TechniquesAnesthesiaGraft HandlingSuture Placement

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved