Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, two medium-throughput assays for assessment of effects on Ca2+-signaling and acrosome reaction in human sperm are described. These assays can be used to quickly and easily screen large amounts of compounds for effects on Ca2+-signaling and acrosome reaction in human sperm.

Abstract

Ca2+-signaling is essential to normal sperm cell function and male fertility. Similarly, the acrosome reaction is vital for the ability of a human sperm cell to penetrate the zona pellucida and fertilize the egg. It is therefore of great interest to test compounds (e.g., environmental chemicals or drug candidates) for their effect on Ca2+-signaling and acrosome reaction in human sperm either to examine the potential adverse effects on human sperm cell function or to investigate a possible role as a contraceptive. Here, two medium-throughput assays are described: 1) a fluorescence-based assay for assessment of effects on Ca2+-signaling in human sperm, and 2) an image cytometric assay for assessment of acrosome reaction in human sperm. These assays can be used to screen a large number of compounds for effects on Ca2+-signaling and acrosome reaction in human sperm. Furthermore, the assays can be used to generate highly specific dose-response curves of individual compounds, determine potential additivity/synergism for two or more compounds, and to study the pharmacological mode of action through competitive inhibition experiments with CatSper inhibitors.

Introduction

The purpose of the two assays described here is to examine effects on Ca2+-signaling and acrosome reaction in human sperm, as has been shown for multiple compounds in several publications employing these assays1,2,3,4,5,6,7. Ca2+-signaling and the acrosome reaction are both vital to normal human sperm cell function and male fertility.

The overall goal of a human sperm cell is to fertilize ....

Protocol

The collection and analysis of human semen samples in the protocols follows the guidelines of the Research Ethics Committee of the Capital Region of Denmark. All semen samples have been obtained after informed consent from volunteer donors. After delivery, the samples were fully anonymized. For their inconvenience each donor received a fee of 500 DKK (about $75 US dollars) per sample. The samples were analyzed on the day of delivery and then destroyed immediately after the laboratory experiments.

Representative Results

Representative results from an experiment testing the effect of 4 compounds (A, B, C, and D) together with a positive (progesterone) and negative (buffer) control on [Ca2+]i in human sperm using the medium-throughput Ca2+-signaling assay can be seen in Figure 4a. In Figure 4b, a dose response curve of progesterone is shown, which was derived from peak ΔF/F0 (%) data induced by seri.......

Discussion

The medium throughput Ca2+ signaling assay is based on measurements of fluorescence from single microwells each containing about 250,000 sperm cells. The captured signal is averaged from all individual sperm cells in the well. The assay thus provides no spatial information about where specifically in the sperm cell [Ca2+]i is changed, in how large a proportion of the sperm cells a change in [Ca2+]i takes place, or how heterogeneous the response is between the individ.......

Acknowledgements

The authors would like to acknowledge the lab of Timo Strünker for supervision of AR and DLE during their stays at his lab. Furthermore, we would like to thank our colleagues at the Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet for their assistance with setting up these two assays. This project was supported by the Danish Environmental Protection Agency as a project under Centre on Endocrine Disrupters and by grants from the Innovation Fund Denmark (grant numbers 005-2010-3 and 14-2013-4).

....

Materials

NameCompanyCatalog NumberComments
0.2 µm pore filterThermo Fisher Scientific, USA296-4545
1 L measuring cylinderThermo Fisher Scientific, USA3662-1000
1,4 and 2 mL plastic tubesEppendorf, Germany30120086 and 0030120094
12-channel pipetteEppendorf, Germany4861000813
384 multi-well platesGreiner Bio-One, Germany781096
15 and 50 mL platic tubesEppendorf, Germany0030122151 and 30122178
A2-slideChemoMetec, Denmark942-0001
Automatic repeater pipetteEppendorf, Germany4987000010
CaCl2
Centrifuge
Clean wide-mouthed plastic container for semen sample
Dimethyl sulfoxide (DMSO)
FITC-coupled lectin of Pisum sativum (FITC-PSA)Sigma-Aldrich, GermanyL0770
Fluo-4 AMThermo Fisher Scientific, USAF14201
FLUOstar OMEGA fluorescence microplate readerBMG Labtech, Germany
Glucose anhydrous
HEPES
Hoechst-33342ChemoMetec, Denmark910-3015
Human serum albumin (HSA)Irvine Scientific9988For addition to HTF+
Immobilizing solution containing 0.6 M NaHCO3 and 0.37% (v/v) formaldehyde in distilled water
Incubator
KCl
KH2PO4
Magnetic stirrer
MgSO4
Na-Lactate
NaCl
NaHCO3
NC-3000 image cytometerChemoMetec, Denmark970-3003
Pipettes and piptting tips
propidium iodide (PI)ChemoMetec, Denmark910-3002
Purified water
Rack for placing 50 mL plastic tubes in 45° angle
S100 bufferChemoMetec, Denmark910-0101
SP1-cassetteChemoMetec, Denmark941-0006
Volumetric flasks of appropriate sizes
Vortexer

References

  1. Schiffer, C., et al. Direct action of endocrine disrupting chemicals on human sperm. EMBO reports. , (2014).
  2. Rehfeld, A., Dissing, S., Skakkebæk, N. E. Chemical UV Filters Mimic the Effect of Proges....

Explore More Articles

Medium throughput ScreeningCalcium SignalingAcrosome ReactionHuman SpermSperm Cell FunctionCompound TestingHTF MediumSperm Cell MotilitySperm Cell ConcentrationFluorescence Plate ReaderCalcium Concentration

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved