A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we present a protocol to demonstrate a behavioral assay that quantifies how alternative visual features, such as motion cues, influence directional decisions in fish. Representative data are presented on the speed and accuracy where Golden Shiner (Notemigonus crysoleucas) follow virtual fish movements.
Collective animal behavior arises from individual motivations and social interactions that are critical for individual fitness. Fish have long inspired investigations into collective motion, specifically, their ability to integrate environmental and social information across ecological contexts. This demonstration illustrates techniques used for quantifying behavioral responses of fish, in this case, Golden Shiner (Notemigonus crysoleucas), to visual stimuli using computer visualization and digital image analysis. Recent advancements in computer visualization allow for empirical testing in the lab where visual features can be controlled and finely manipulated to isolate the mechanisms of social interactions. The purpose of this method is to isolate visual features that can influence the directional decisions of the individual, whether solitary or with groups. This protocol provides specifics on the physical Y-maze domain, recording equipment, settings and calibrations of the projector and animation, experimental steps and data analyses. These techniques demonstrate that computer animation can elicit biologically-meaningful responses. Moreover, the techniques are easily adaptable to test alternative hypotheses, domains, and species for a broad range of experimental applications. The use of virtual stimuli allows for the reduction and replacement of the number of live animals required, and consequently reduces laboratory overhead.
This demonstration tests the hypothesis that small relative differences in the movement speeds (2 body lengths per second) of virtual conspecifics will improve the speed and accuracy with which shiners follow the directional cues provided by the virtual silhouettes. Results show that shiners directional decisions are significantly affected by increases in the speed of the visual cues, even in the presence of background noise (67% image coherency). In the absence of any motion cues, subjects chose their directions at random. The relationship between decision speed and cue speed was variable and increases in cue speed had a modestly disproportionate influence on directional accuracy.
Animals sense and interpret their habitat continuously to make informed decisions when interacting with others and navigating noisy surroundings. Individuals can enhance their situational awareness and decision making by integrating social information into their actions. Social information, however, largely stems from inference through unintended cues (i.e., sudden maneuvers to avoid a predator), which can be unreliable, rather than through direct signals that have evolved to communicate specific messages (e.g., the waggle dance in honey bees)1. Identifying how individuals rapidly assess the value of social cues, or any sensory information, can....
All experimental protocols were approved by the Institutional Animal Care and Use Committee of the Environmental Laboratory, US Army Engineer and Research and Development Center, Vicksburg, MS, USA (IACUC# 2013-3284-01).
1. Sensory maze design
Hypothesis and design
To demonstrate the utility of this experimental system we tested the hypothesis that the accuracy with which Golden Shiner follow a visual cue will improve with the speed of that cue. Wild type Golden Shiner were used (N = 16, body lengths, BL, and wet weights, WW, were 63.4 ± 3.5 mm and 1.8 ± 0.3 g, respectfully). The coherency of the visual stimuli (leader/distractor r.......
Visual cues are known to trigger an optomotor response in fish exposed to black and white gratings13 and there is increasing theoretical and empirical evidence that neighbor speed plays an influential role in governing the dynamical interactions observed in fish schools7,14,15,16,17. Contrasting hypotheses exist to explain how individua.......
We thank Bryton Hixson for setup assistance. This program was supported by the Basic Research Program, Environmental Quality and Installations (EQI; Dr. Elizabeth Ferguson, Technical Director), US Army Engineer Research and Development Center.
....Name | Company | Catalog Number | Comments |
Black and white IP camera | Noldus, Leesburg, VA, USA | https://www.noldus.com/ | |
Extruded aluminum | 80/20 Inc., Columbia City, IN, USA | 3030-S | https://www.8020.net 3.00" X 3.00" Smooth T-Slotted Profile, Eight Open T-Slots |
Finfish Starter with Vpak, 1.5 mm extruded pellets | Zeigler Bros. Inc., Gardners, PA, USA | http://www.zeiglerfeed.com/ | |
Golden shiners | Saul Minnow Farm, AR, USA | http://saulminnow.com/ | |
ImageJ (v 1.52h) freeware | National Institute for Health (NIH), USA | https://imagej.nih.gov/ij/ | |
LED track lighting | Lithonia Lightening, Conyers, GA, USA | BR20MW-M4 | https://lithonia.acuitybrands.com/residential-track |
Oracle 651 white cut vinyl | 651Vinyl, Louisville, KY, USA | 651-010M-12:5ft | http://www.651vinyl.com. Can order various sizes. |
PowerLite 570 overhead projector | Epson, Long Beach CA, USA | V11H605020 | https://epson.com/For-Work/Projectors/Classroom/PowerLite-570-XGA-3LCD-Projector/p/V11H605020 |
Processing (v 3) freeware | Processing Foundation | https://processing.org/ | |
R (3.5.1) freeware | The R Project for Statistical Computing | https://www.r-project.org/ | |
Ultra-white 360 theater screen | Alternative Screen Solutions, Clinton, MI, USA | 1950 | https://www.gooscreen.com. Must call for special cut size |
Z-Hab system | Pentair Aquatic Ecosystems, Apopka, FL, USA | https://pentairaes.com/. Call for details and sizing. |
Explore More Articles
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved