Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

By using an innovative ground-based analogue model, we are able to simulate a space mission including a trip to (0 g) and a stay on Mars (0.38 g) in rats. This model allows for a longitudinal assessment of the physiological changes occurring during the two hypo-gravitational stages of the mission.

Abstract

Rodent ground-based models are widely used to understand the physiological consequences of space flight on the physiological system and have been routinely employed since 1979 and the development of hind limb unloading (HLU). However, the next steps in space exploration now include to travel to Mars where the gravity is 38% of Earth’s gravity. Since no human being has experienced this level of partial gravity, a sustainable ground-based model is necessary to investigate how the body, already impaired by the time spent in microgravity, would react to this partial load. Here, we used our innovative partial weight-bearing (PWB) model to mimic a short mission and stay on Mars to assess the physiological impairments in the hind limb muscles induced by two different levels of reduced gravity applied in sequential fashion. This could provide a safe, ground-based model to study the musculoskeletal adaptations to gravitational change and to establish effective countermeasures to preserve astronauts’ health and function.

Introduction

Extraterrestrial targets, including the Moon and Mars, represent the future of human space exploration, but both have considerably weaker gravity than Earth. While the consequences of weightlessness on the musculoskeletal system have been extensively studied in astronauts1,2,3,4,5 and in rodents6,7,8,9, the latter thanks to the well-established hindlimb unloading (HLU) model

Protocol

All methods described here were approved by the Institutional Animal Care and Use Committee (IACUC) of Beth Israel Deaconess Medical Center under protocol number 067-2016.

NOTE: Male Wistar rats aged of 14 weeks at baseline (day 0) are used. Rats are housed individually in custom cages 24 h prior baseline to allow for acclimation.

1. Hindlimb unloading

NOTE: The pelvic harness can be put on either anesthetized or awake animals. Here, the de.......

Representative Results

Taking advantage of the new cages that we previously designed and described in detail12, we used a stainless steel chain-based suspension device that is suitable for both hindlimb unloading (HLU, Figure 1) and partial weight-bearing (PWB, Figure 2). The critical advantage of our design is the ability to go from one type of unloading to the other in a matter of minutes while maintaining an identical environ.......

Discussion

This model presents the first ground-based analogue developed to investigate successive mechanical unloading levels and aims to mimic a trip to and stay on Mars.

Many steps of this protocol are critical to ensure its success and need to be closely examined. First, it is crucial to monitor the wellbeing of the animals and ensure that they are maintaining a normal behavior (i.e., performing tasks such as eating, resting, and exploring), particularly during the PWB state where they maintain a rel.......

Acknowledgements

This work was supported by the National Aeronautics and Space Administration (NASA: NNX16AL36G). Authors would like to thank Carson Semple for providing the drawings included in this manuscript.

....

Materials

NameCompanyCatalog NumberComments
10G Insulated Solid Copper WireGrainger4WYY8100 ft solid building wire with THHN wire type and 10 AWG wire size, black
2 Custom design plexiglass wallsP&K Custom Acrylics Inc.N/A2 clear plexiglass custom wall 3/16" tick, width 12 3/16", height 18 13/16", 1 rounded slot 0.25 in of diameter located at the center top of the wall
3M Transpore Surgical TapeFisher Scientific18-999-380Transpore Surgical Tape 
Accessory Grasping Bar RatHarvard Apparatus76-0479Accessory grasping bar rat, front or hind paws
Analytical ScaleFisher Scientific01-920-251OHAUS Adventurer Analytic Balance
Animal ScaleZIEIS by AmazonN/A70 lb capacity digital scale big top 11.5" x 9.3" dura platform z-seal 110V adapter 0.5 ounce accuracy
Back Bra ExtendersLuzen by AmazonN/A17 pcs 2 hook 3 rows assorted random color women spacing bra clip extender strap
Digital Force GageWagner InstrumentsDFE2-01050 N Capacity Digital Grip Force Meter Chatillon DFE II
GauzeFisher Scientific13-761-52Non-sterile Cotton Gauze Sponges 
Key rings and swivel clapsPaxcoo Direct by AmazonN/APaxCoo 100 pcs metal swivel lanyard snap hook with key rings
Lobster ClapsPanda Jewelry International Limited by AmazonN/APandahall 100 pcs grade A stainless steel lobster claw clasps 13x8mm
Rat Tether Jacket - LargeBraintree ScientificRJ LRodent Jacket
Rat Tether Jacket - MediumBraintree ScientificRJ MRodent Jacket
Silicone tubingVersilon St Gobain Ceramics and PlasticsABX00011SPX-50 Silicone Tubing
Stainless Steel ChainsSuper Lover by AmazonN/A4.5m 15FT stainless steel cable chain link in bulk 6x8mm

References

  1. Desplanches, D. Structural and Functional Adaptations of Skeletal Muscle to Weightlessness. International Journal of Sports Medicine. 18 (S4), (1997).
  2. Fitts, R. H., Riley, D. R., Wildrick, J. J.

Explore More Articles

Hindlimb UnloadingPartial Weight BearingRat ModelMars MissionPhysiological ChangesBehaviorMemoryPerformanceStressGround based ModelSpace ExplorationAnesthesiaSuspension Device

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved