A subscription to JoVE is required to view this content. Sign in or start your free trial.
This article describes the growth of epitaxial films of Mg3N2 and Zn3N2 on MgO substrates by plasma-assisted molecular beam epitaxy with N2 gas as the nitrogen source and optical growth monitoring.
This article describes a procedure for growing Mg3N2 and Zn3N2 films by plasma-assisted molecular beam epitaxy (MBE). The films are grown on 100 oriented MgO substrates with N2 gas as the nitrogen source. The method for preparing the substrates and the MBE growth process are described. The orientation and crystalline order of the substrate and film surface are monitored by the reflection high energy electron diffraction (RHEED) before and during growth. The specular reflectivity of the sample surface is measured during growth with an Ar-ion laser with a wavelength of 488 nm. By fitting the time dependence of the reflectivity to a mathematical model, the refractive index, optical extinction coefficient, and growth rate of the film are determined. The metal fluxes are measured independently as a function of the effusion cell temperatures using a quartz crystal monitor. Typical growth rates are 0.028 nm/s at growth temperatures of 150 °C and 330 °C for Mg3N2 and Zn3N2 films, respectively.
The II3-V2 materials are a class of semiconductors that have received relatively little attention from the semiconductor research community compared to III-V and II-VI semiconductors1. The Mg and Zn nitrides, Mg3N2 and Zn3N2, are attractive for consumer applications because they are composed of abundant and non-toxic elements, making them inexpensive and easy to recycle unlike most III-V and II-VI compound semiconductors. They display an anti-bixbyite crystal structure similar to the CaF2 structure, with one of the interpenetrating fcc F-sublattices being half-occupied....
1. MgO substrate preparation
NOTE: Commercial one-side epi-polished (100) oriented single crystal MgO square substrates (1 cm x 1 cm) were employed for the X3N2 (X = Zn and Mg) thin film growth.
The black object in the inset in Figure 5B is a photograph of an as-grown 200 nm Zn3N2 thin film. Similarly, the yellow object in the inset in Figure 5C is an as-grown 220 nm Mg3N2 thin film. The yellow film is transparent to the extent that it is easy-to-read text placed behind the film10.
The surface .......
A variety of considerations is involved in the choice of substrates and establishing the growth conditions that optimize the structural and electronic properties of the films. The MgO substrates are heated at high temperature in air (1000 °C) to remove carbon contamination from the surface and improve the crystalline order in the substrate surface. Ultrasonic cleaning in acetone is a good alternative method to clean the MgO substrates.
The (400) X-ray diffraction peak for the Zn3
This work was supported by the Natural Sciences and Engineering Research Council of Canada.
....Name | Company | Catalog Number | Comments |
(100) MgO | University Wafer | 214018 | one side epi-polished |
Acetone | Fisher Chemical | 170239 | 99.8% |
Argon laser | Lexel Laser | 00-137-124 | 488 nm visible wavelength, 350 mW output power |
Chopper | Stanford Research system | SR540 | Max. Frequency: 3.7 kHz |
Lock-in amplifier | Stanford Research system | 37909 | DSP SR810, Max. Frequency: 100 kHz |
Magnesium | UMC | MG6P5 | 99.9999% |
MBE system | VG Semicon | V80H0016-2 SHT 1 | V80H-10 |
Methanol | Alfa Aesar | L30U027 | Semi-grade 99.9% |
Nitrogen | Praxair | 402219501 | 99.998% |
Oxygen | Linde Gas | 200-14-00067 | > 99.9999% |
Plasma source | SVT Associates | SVTA-RF-4.5PBN | PBN, 0.11" Aperture, Specify Length: 12" – 20" |
Si photodiode | Newport | 2718 | 818-UV Enhanced, 200 - 1100 nm |
Zinc | Alfa Aesar | 7440-66-6 | 99.9999% |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved