Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Endocrine disruptor chemicals (EDCs) represent a serious problem for organisms and for natural environments. Drosophila melanogaster represents an ideal model to study EDC effects in vivo. Here, we present methods to investigate endocrine disruption in Drosophila, addressing EDC effects on fecundity, fertility, developmental timing, and lifespan of the fly.

Abstract

In recent years there has been growing evidence that all organisms and the environment are exposed to hormone-like chemicals, known as endocrine disruptor chemicals (EDCs). These chemicals may alter the normal balance of endocrine systems and lead to adverse effects, as well as an increasing number of hormonal disorders in the human population or disturbed growth and reduced reproduction in the wildlife species. For some EDCs, there are documented health effects and restrictions on their use. However, for most of them, there is still no scientific evidence in this sense. In order to verify potential endocrine effects of a chemical in the full organism, we need to test it in appropriate model systems, as well as in the fruit fly, Drosophila melanogaster. Here we report detailed in vivo protocols to study endocrine disruption in Drosophila, addressing EDC effects on the fecundity/fertility, developmental timing, and lifespan of the fly. In the last few years, we used these Drosophila life traits to investigate the effects of exposure to 17-α-ethinylestradiol (EE2), bisphenol A (BPA), and bisphenol AF (BPA F). Altogether, these assays covered all Drosophila life stages and made it possible to evaluate endocrine disruption in all hormone-mediated processes. Fecundity/fertility and developmental timing assays were useful to measure the EDC impact on the fly reproductive performance and on developmental stages, respectively. Finally, the lifespan assay involved chronic EDC exposures to adults and measured their survivorship. However, these life traits can also be influenced by several experimental factors that had to be carefully controlled. So, in this work, we suggest a series of procedures we have optimized for the right outcome of these assays. These methods allow scientists to establish endocrine disruption for any EDC or for a mixture of different EDCs in Drosophila, although to identify the endocrine mechanism responsible for the effect, further essays could be needed.

Introduction

Human activities have been releasing into the environment a massive amount of chemicals, which represent a serious problem for organisms and for natural ecosystems1. Of these pollutants, it is estimated that about 1,000 different chemicals may alter the normal balance of endocrine systems; according to this property, they are classified as endocrine disrupting chemicals (EDCs). Specifically, based on a recent definition by the Endocrine Society, the EDCs are “an exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action”2. Over the last three decades, there has been grow....

Protocol

1. Food Preparation

  1. For stock maintenance and for larval growth, use a cornmeal medium containing 3 % powdered yeast, 10 % sucrose, 9 % precooked cornmeal, 0.4 % agar, thereafter called Cornmeal medium (CM).
    1. Put 30 g of yeast into 100 mL of tap water, bring it to a boil and let it boil for 15 min.
    2. Separately, mix well 90 g of precooked cornmeal, 100 g of sugar, and 4 g of agar into 900 mL of tap water.
    3. Bring the solution to a boil, lower the heat and cook for.......

Representative Results

In this section, key steps of the above protocols are reported in the form of simplified schemes. Given that flies tend to avoid unpalatable compounds, the first thing to do is to assay the taste of the selected EDC. This can be done by mixing a food coloring (for example, red food dye no. 40)35 with the food supplemented with the selected EDC at various doses or with the solvent alone. Flies fed on these media are examined under a stereomicroscope and the food intake is estimated by their abdomin.......

Discussion

The fruit fly D. melanogaster has been extensively employed as an in vivo model system to investigate the potential effects of environmental EDCs such as DBP28, BPA, 4-NP, 4-tert-OP29, MP30, EP31,32, DEHP33, and EE234. Several reasons have led its use as a model in this field of research. Apart from its undisputed advantages as a model .......

Acknowledgements

The authors thank Orsolina Petillo for technical support. The authors thank Dr. Mariarosaria Aletta (CNR) for bibliographic support. The authors thank Dr. Gustavo Damiano Mita for introducing them to the EDC world. The authors thank Leica Microsystems and Pasquale Romano for their assistance. This research was supported by Project PON03PE_00110_1. “Sviluppo di nanotecnologie Orientate alla Rigenerazione e Ricostruzione Tissutale, Implantologia e Sensoristica in Odontoiatria/oculistica” acronimo “SORRISO”; Committente: PO FESR 2014-2020 CAMPANIA; Project PO FESR Campania 2007-2013 “NANOTECNOLOGIE PER IL RILASCIO CONTROLLATO DI MOLECOLE BIO....

Materials

NameCompanyCatalog NumberComments
17α-EthinylestradiolSigmaE4876-1G
Agar for Drosophila mediumBIOSIGMA789148
Bisphenol ASigma239658-50G
Bisphenol AFSigma90477-100MG
CornmealCA' BIANCA
Diethyl etherSigma
Drosophila VialsBIOSIGMA78900825x95 mm
Drosophila VialsBIOSIGMA78900929x95 mm
Drosophila VialsKaltek18722X63
Embryo collection cageCraftsPlexiglass cylinder (12,5 x7 cm) with an open end and the other end closed by a rectangular base in which a slot allows the insertion of special trays for laying
EthanolFLUKA2860
EtherizerCraftscylindrical glass container with a cotton plug
Glass Bottle250mL Bottles
Glass VialsMicrotechST 10024FLAT BOTTOM TUBE 100X24
Hand blender PimmyArietefood processor
Instant Success yeastESKAPowdered yeast
Laying trayCraftsplexiglass trays (11 x 2,6 cm) in wich to pour medium for laying
Methyl4-hydroxybenzoateSIGMAH5501
Petri DishFalcon35101660x5
Red dye no. 40SIGMA16035
Stereomicroscope with LED lightsLeicaS4E
SucroseHIMEDIAMB025
Tomato sauceCirio

References

  1. Kareiva, P. M., Marvier, M., Kareiva, P. M., Marvier, M. Managing fresh water for people and nature. Conservation Science: Balancing the Needs of People and Nature. , 460-509 (2011).
  2. Zoeller, R. T., et al.

Explore More Articles

Drosophila MelanogasterEndocrine DisruptionFertilityDevelopmentLifespanEndocrine DisruptorsIn VivoReproductive PerformanceCornmeal MediumEE2Carbon Dioxide

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved