A subscription to JoVE is required to view this content. Sign in or start your free trial.
Endocrine disruptor chemicals (EDCs) represent a serious problem for organisms and for natural environments. Drosophila melanogaster represents an ideal model to study EDC effects in vivo. Here, we present methods to investigate endocrine disruption in Drosophila, addressing EDC effects on fecundity, fertility, developmental timing, and lifespan of the fly.
In recent years there has been growing evidence that all organisms and the environment are exposed to hormone-like chemicals, known as endocrine disruptor chemicals (EDCs). These chemicals may alter the normal balance of endocrine systems and lead to adverse effects, as well as an increasing number of hormonal disorders in the human population or disturbed growth and reduced reproduction in the wildlife species. For some EDCs, there are documented health effects and restrictions on their use. However, for most of them, there is still no scientific evidence in this sense. In order to verify potential endocrine effects of a chemical in the full organism, we need to test it in appropriate model systems, as well as in the fruit fly, Drosophila melanogaster. Here we report detailed in vivo protocols to study endocrine disruption in Drosophila, addressing EDC effects on the fecundity/fertility, developmental timing, and lifespan of the fly. In the last few years, we used these Drosophila life traits to investigate the effects of exposure to 17-α-ethinylestradiol (EE2), bisphenol A (BPA), and bisphenol AF (BPA F). Altogether, these assays covered all Drosophila life stages and made it possible to evaluate endocrine disruption in all hormone-mediated processes. Fecundity/fertility and developmental timing assays were useful to measure the EDC impact on the fly reproductive performance and on developmental stages, respectively. Finally, the lifespan assay involved chronic EDC exposures to adults and measured their survivorship. However, these life traits can also be influenced by several experimental factors that had to be carefully controlled. So, in this work, we suggest a series of procedures we have optimized for the right outcome of these assays. These methods allow scientists to establish endocrine disruption for any EDC or for a mixture of different EDCs in Drosophila, although to identify the endocrine mechanism responsible for the effect, further essays could be needed.
Human activities have been releasing into the environment a massive amount of chemicals, which represent a serious problem for organisms and for natural ecosystems1. Of these pollutants, it is estimated that about 1,000 different chemicals may alter the normal balance of endocrine systems; according to this property, they are classified as endocrine disrupting chemicals (EDCs). Specifically, based on a recent definition by the Endocrine Society, the EDCs are “an exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action”2. Over the last three decades, there has been grow....
1. Food Preparation
In this section, key steps of the above protocols are reported in the form of simplified schemes. Given that flies tend to avoid unpalatable compounds, the first thing to do is to assay the taste of the selected EDC. This can be done by mixing a food coloring (for example, red food dye no. 40)35 with the food supplemented with the selected EDC at various doses or with the solvent alone. Flies fed on these media are examined under a stereomicroscope and the food intake is estimated by their abdomin.......
The fruit fly D. melanogaster has been extensively employed as an in vivo model system to investigate the potential effects of environmental EDCs such as DBP28, BPA, 4-NP, 4-tert-OP29, MP30, EP31,32, DEHP33, and EE234. Several reasons have led its use as a model in this field of research. Apart from its undisputed advantages as a model .......
The authors thank Orsolina Petillo for technical support. The authors thank Dr. Mariarosaria Aletta (CNR) for bibliographic support. The authors thank Dr. Gustavo Damiano Mita for introducing them to the EDC world. The authors thank Leica Microsystems and Pasquale Romano for their assistance. This research was supported by Project PON03PE_00110_1. “Sviluppo di nanotecnologie Orientate alla Rigenerazione e Ricostruzione Tissutale, Implantologia e Sensoristica in Odontoiatria/oculistica” acronimo “SORRISO”; Committente: PO FESR 2014-2020 CAMPANIA; Project PO FESR Campania 2007-2013 “NANOTECNOLOGIE PER IL RILASCIO CONTROLLATO DI MOLECOLE BIO....
Name | Company | Catalog Number | Comments |
17α-Ethinylestradiol | Sigma | E4876-1G | |
Agar for Drosophila medium | BIOSIGMA | 789148 | |
Bisphenol A | Sigma | 239658-50G | |
Bisphenol AF | Sigma | 90477-100MG | |
Cornmeal | CA' BIANCA | ||
Diethyl ether | Sigma | ||
Drosophila Vials | BIOSIGMA | 789008 | 25x95 mm |
Drosophila Vials | BIOSIGMA | 789009 | 29x95 mm |
Drosophila Vials | Kaltek | 187 | 22X63 |
Embryo collection cage | Crafts | Plexiglass cylinder (12,5 x7 cm) with an open end and the other end closed by a rectangular base in which a slot allows the insertion of special trays for laying | |
Ethanol | FLUKA | 2860 | |
Etherizer | Crafts | cylindrical glass container with a cotton plug | |
Glass Bottle | 250mL Bottles | ||
Glass Vials | Microtech | ST 10024 | FLAT BOTTOM TUBE 100X24 |
Hand blender Pimmy | Ariete | food processor | |
Instant Success yeast | ESKA | Powdered yeast | |
Laying tray | Crafts | plexiglass trays (11 x 2,6 cm) in wich to pour medium for laying | |
Methyl4-hydroxybenzoate | SIGMA | H5501 | |
Petri Dish | Falcon | 351016 | 60x5 |
Red dye no. 40 | SIGMA | 16035 | |
Stereomicroscope with LED lights | Leica | S4E | |
Sucrose | HIMEDIA | MB025 | |
Tomato sauce | Cirio |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved