A subscription to JoVE is required to view this content. Sign in or start your free trial.
Bacteria encode diverse mechanisms for engaging in interbacterial competition. Here, we present a culture-based protocol for characterizing competitive interactions between bacterial isolates and how they impact the spatial structure of a mixed population.
This manuscript describes a culture-based, coincubation assay for detecting and characterizing competitive interactions between two bacterial populations. This method employs stable plasmids that allow each population to be differentially tagged with distinct antibiotic resistance capabilities and fluorescent proteins for selection and visual discrimination of each population, respectively. Here, we describe the preparation and coincubation of competing Vibrio fischeri strains, fluorescence microscopy imaging, and quantitative data analysis. This approach is simple, yields quick results, and can be used to determine whether one population kills or inhibits the growth of another population, and whether competition is mediated through a diffusible molecule or requires direct cell-cell contact. Because each bacterial population expresses a different fluorescent protein, the assay permits the spatial discrimination of competing populations within a mixed colony. Although the described methods are performed with the symbiotic bacterium V. fischeri using conditions optimized for this species, the protocol can be adapted for most culturable bacterial isolates.
This manuscript outlines a culture-based method to determine whether two bacterial isolates are capable of competitive interactions. When studying mixed populations, it is important to assess the extent to which the bacterial isolates interact, particularly whether isolates are directly competing through interference mechanisms. Interference competition refers to interactions where one population directly inhibits the growth or kills a competitor population1. These interactions are important to identify because they can have profound effects on a microbial community’s structure and function2,3.
Mechanisms for microbial competition have been discovered broadly in genomes of bacteria from diverse environments including both host-associated and free-living bacteria4,5,6,7,8,9. A variety of competition strategies have been described10,11 including diffusible mechanisms, such as bactericidal chemicals1,12 and secreted antimicrobial peptides13, as well as contact-dependent mechanisms that require cell-cell contact to transfer an inhibitory effector into target cells9,14,15,16,17,18.
Although culture-based coincubations are commonly used in microbiology5,8,19, this manuscript outlines how to use the assay to characterize the mechanism of competition, as well as suggestions for adapting the protocol for use with other bacterial species. Furthermore, this method describes multiple approaches for analyzing and presenting the data to answer different questions about the nature of the competitive interactions. Although the techniques described here were used previously to identify the interbacterial killing mechanism underlying intraspecific competition between symbiotic strains of coisolated Vibrio fischeri bacteria19, they are suitable for many bacterial species including environmental isolates and human pathogens, and can be utilized to evaluate both contact-dependent and diffusible competitive mechanisms. Steps in the protocol may require optimization for other bacterial species. Given that more model systems are expanding their studies beyond the use of isogenic organisms to include different genotypes10,16,20,21, this method will be a valuable resource for researchers seeking to understand how competition impacts multi-strain or multi-species systems.
1. Prepare Strains for Coincubation
2. Coincubate Bacterial Strains
3. Visualizing Coincubations Using Fluorescence Microscopy
4. Data Analysis
5. Determining Whether Interaction is Contact-dependent
NOTE: If you find that one strain kills or inhibits the reference strain, the interaction may be diffusible or contact-dependent. To determine whether the interaction is dependent on cell-cell contact, perform a coincubation assay as described above for steps 1-2 with the following modifications.
In order to assess competitive interactions between bacterial populations, a coincubation assay protocol was developed and optimized for V. fischeri. This method utilizes stable plasmids that encode antibiotic resistance genes and fluorescent proteins, allowing for differential selection and visual discrimination of each strain. By analyzing the data collected from the coincubation assay, the competitive outcome of an interaction and the mechanism of the interaction can be identi...
The coincubation assay described above provides a powerful method to discover interbacterial competition. This approach allowed for the identification of intraspecific competition among V. fischeri isolates and characterization of the competitive mechanism19. Although the method described was optimized for the marine bacterium V. fischeri, it can be easily modified to accommodate other bacterial species including clinical and environmental isolates. It is important to note that c...
The authors have nothing to disclose.
We would like to thank reviewers for their helpful feedback. A.N.S. was supported by the Gordon and Betty Moore Foundation through Grant GBMF 255.03 to the Life Sciences Research Foundation.
Name | Company | Catalog Number | Comments |
1.5 mL Microcentrifuge Tubes | Fisher | 05-408-129 | |
10 μL multichannel pipette | |||
100 μL multichannel pipette | |||
300 μL multichannel pipette | |||
10 μL single channel pipette | |||
20 μL single channel pipette | |||
200 μL single channel pipette | |||
1000 μL single channel pipette | |||
24-well plates | Fisher | 07-200-84 | sterile with lid |
96-well plates | VWR | 10062-900 | sterile with lid |
Calculator | |||
Chloramphenicol | Sigma | C0378 | stock (20 mg/mL in Ethanol); final concentration in media (2 μg /mL LBS) |
Fluorescence dissecting microscope with camera and imaging software | |||
forceps | Fisher | 08-880 | |
Kanamycin Sulfate | Fisher | BP906-5 | stock (100 mg/mL in water, filter sterilize); final concentration in media (1 μg/mL LBS) |
Nitrocellulose membrane (FS MCE, 25MM, NS) | Fisher | SA1J788H5 | 0.22 μm nitrocellulose membrane (pk of 100) |
petri plates | Fisher | FB0875713 | sterile with lid |
Spectrophotometer | |||
Semi-micro cuvettes | VWR | 97000-586 | |
TipOne 0.1-10 μL starter system | USA Scientific | 1111-3500 | 10 racks |
TipOne 200 μL starter system | USA Scientific | 1111-500 | 10 racks |
TipOne 1000 μL starter system | USA Scientific | 1111-2520 | 10 racks |
Vortex | |||
Name | Company | Catalog Number | Comments |
LBS media | |||
1M Tris Buffer (pH ~7.5) | 50 mL 1 M stock buffer (62 mL HCl, 938 mL DI water, 121 g Trizma Base) | ||
Agar Technical | Fisher | DF0812-17-9 | 15 g (Add only for plates) |
DI water | 950 mL | ||
Sodium Chloride | Fisher | S640-3 | 20 g |
Tryptone | Fisher | BP97265 | 10 g |
Yeast Extract | Fisher | BP9727-2 | 5 g |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved