A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol describes the construction of a hybrid microdrive array that allows implantation of nine independently adjustable tetrodes and one adjustable opto-silicon probe in two brain regions in freely moving mice. Also demonstrated is a method for safely recovering and reusing the opto-silicon probe for multiple purposes.
Multi-regional neural recordings can provide crucial information to understanding fine-timescale interactions between multiple brain regions. However, conventional microdrive designs often only allow use of one type of electrode to record from single or multiple regions, limiting the yield of single-unit or depth profile recordings. It also often limits the ability to combine electrode recordings with optogenetic tools to target pathway and/or cell type specific activity. Presented here is a hybrid microdrive array for freely moving mice to optimize yield and a description of its fabrication and reuse of the microdrive array. The current design employs nine tetrodes and one opto-silicon probe implanted in two different brain areas simultaneously in freely moving mice. The tetrodes and the opto-silicon probe are independently adjustable along the dorsoventral axis in the brain to maximize the yield of unit and oscillatory activities. This microdrive array also incorporates a set-up for light, mediating optogenetic manipulation to investigate the regional- or cell type-specific responses and functions of long-range neural circuits. In addition, the opto-silicon probe can be safely recovered and reused after each experiment. Because the microdrive array consists of 3D-printed parts, the design of microdrives can be easily modified to accommodate various settings. First described is the design of the microdrive array and how to attach the optical fiber to a silicon probe for optogenetics experiments, followed by fabrication of the tetrode bundle and implantation of the array into a mouse brain. The recording of local field potentials and unit spiking combined with optogenetic stimulation also demonstrate feasibility of the microdrive array system in freely moving mice.
It is crucial to understand how neuronal activity supports cognitive process, such as learning and memory, by investigating how different brain regions dynamically interact with each other. To elucidate dynamics of the neural activity underlying cognitive tasks, large-scale extracellular electrophysiology has been conducted in freely moving animals with the aid of microdrive arrays1,2,3,4. In the past two decades, several types of microdrive array have been developed to implant electrodes into multiple brain regions for rats
All methods described here have been approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Texas Southwestern Medical Center.
1. Preparations of microdrive array parts
The microdrive array was constructed within 5 days. The timeline of microdrive preparation is described in Table 2. Using this microdrive, nine tetrodes and one silicon probe were implanted into the hippocampal CA1 and MEC of the mouse [21 week old/29 g body weight male pOxr1-Cre (C57BL/6 background)], respectively. This transgenic mouse expresses Cre in MEC layer III pyramidal neurons. The mouse was injected with 200 nL of AAV5-DIO-ChR2-YFP (titer: 7.7 x 1012 gc/mL) into the MEC 10 weeks befo.......
The protocol demonstrates how to construct and implant a hybrid microdrive array that allows recording of neural activities from two brain areas using independent adjustable tetrodes and a silicon-probe in freely behaving mice. It also demonstrates optogenetic experiments and the recovery of the silicon probe after experiments. While adjustable silicon probe33 or opto-silicon probe36 implantation are previously demonstrated in mice, this protocol has clear advantages in the.......
This work was supported in part by Japan Society for the Promotion of Science Overseas Research Fellowships (HO), Endowed Scholar Program (TK), Human Frontier Science Program (TK), Brain Research Foundation (TK), Faculty Science and Technology Acquisition and Retention Program (TK), Brain & Behavior Research Foundation (TK), and by The Sumitomo Foundation Research Grant (JY), NARSAD Young Investigator Research Grant (JY). We thank W. Marks for valuable comments and suggestions during the preparation of the manuscript.
....Name | Company | Catalog Number | Comments |
#00-90 screw | J.I. Morris | #00-90-1/8 | EIB screws |
#0-80 nut | Small Parts | B00DGB7CT2 | brass nut for holding fiber ferrule holder |
#0-80 screw | Small Parts | B000FMZ57G | brass machine screw for probe connector mount, fiber ferrule holder, and shielding cone |
22 Ga polyetheretherketone tubes | Small Parts | SLPT-22-24 | for attaching to the shuttle, 0.025 inches inner diameter |
23 Ga stainless tubing | Small Parts | HTX-23R | for tetrode |
23 Ga stainless wire | Small Parts | HTX-23R-24-10 | for L-shape/support wire |
26 Ga stainless wire | Small Parts | GWX-0200 | for guide-posts |
30 Ga stainless wire | Small Parts | HTX-30R | for tetrode |
3-D CAD software package | Dassault Systèmes | SolidWorks 2003 | |
3D printer | FormLab | Form2 | |
5.5mil polyimide insulating tubes | HPC Medical | 72113900001-012 | |
aluminum foil tape | Tyco | Tyco Adhesives 617022 Aluminum Foil Tape | for the alternative shielding cone |
conductive paste | YSHIELD | HSF54 | for shielding cone |
customized screws for silicon-probe microdrive | AMT | UNM1.25-HalfMoon | half-moon stainless screw, 1.5 mm diameter, 300 µm thread pitch |
customized screws for tetrode microdrive | AMT | Yamamoto_0000-160_9mm | slotted stainless screw, 0.5 mm diameter, 160 µm thread pitch, custom-made to order for our design |
dental acrylic | Stoelting | 51459 | |
dental model resin | FormLab | RS-F2-DMBE-02 | |
Dremel rotary tool | Dremel | model 800 | a grinder |
drill bit | Fine Science Tool | 19007-05 | |
electric interface board | Neuralynx | EIB-36-Narrow | |
epoxy | Devcon | GLU-735.90 | 5 minutes epoxy |
eye ointment | Dechra | Puralube Ophthalmic Ointment | to prevent mice eyes from drying during surgery |
fiber polishing sheet | Thorlabs | LFG5P | for polishing the optical fiber |
fine tweezers | Protech International | 15-368 | for loading/recovering the silicon probe |
gold pins | Neuralynx | EIB Pins Small | |
ground wire | A-M Systems | 781500 | 0.010 inch bare silver wire |
headstage preamp | Neuralynx | HS-36 | |
impedance meter | BAK electronics | Model IMP-2 | 1 kHz testing frequency |
mineral oil | ZONA | 36-105 | for lubricating screws and wires |
optical fiber | Doric | MFC_200/260-0.22_50mm_ZF1.25(G)_FLT | |
Recording system | Neuralynx | Digital Lynx 4SX | |
ruby fiber scribe | Thorlabs | S90R | for cleaving the optical fiber |
silicon grease | Fine Science Tool | 29051-45 | |
silicon probe | Neuronexus | A1x32-Edge-5mm-20-177 | Fig. 3, 4A, 4B, 5 |
silicon probe | Neuronexus | A1x32-6mm-50-177 | Fig. 4C |
silicon probe washing solution | Alcon | AL10078844 | contact lens cleaner |
silicone lubber | Smooth-On | Dragon Skin 10 FAST | for preparation of microdrive mold |
silver paint | GC electronic | 22-023 | silver print II coating, used for ground wires |
skull screw | Otto Frei | 2647-10AC | 0.8 mm diameter, 0.200 mm thread pitch |
standard surgical scissors | ROBOZ | RS-5880 | |
stereotaxic apparatus | Kopf | Model 942 | |
super glue | Loctite | LOC230992 | for applying to guide-posts |
surgical tweezers | ROBOZ | RS-5135 | |
Tetrode Twister | Jun Yamamoto | TT-01 | |
tetrode wires | Sandvik | PX000004 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved