A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol integrated near-infrared spectroscopy into conventional cardiopulmonary exercise testing to identify the involvement of the cerebral hemodynamic response in exercise intolerance in patients with heart failure.
Cerebral hypo-oxygenation during rest or exercise negatively impacts the exercise capacity of patients with heart failure with reduced ejection fraction (HF). However, in clinical cardiopulmonary exercise testing (CPET), cerebral hemodynamics is not assessed. NIRS is used to measure cerebral tissue oxygen saturation (SctO2) in the frontal lobe. This method is reliable and valid and has been utilized in several studies. SctO2 is lower during both rest and peak exercise in patients with HF than in healthy controls (66.3 ± 13.3% and 63.4 ± 13.8% vs. 73.1 ± 2.8% and 72 ± 3.2%). SctO2 at rest is significantly linearly correlated with peak VO2 (r = 0.602), oxygen uptake efficiency slope (r = 0.501), and brain natriuretic peptide (r = -0.492), all of which are recognized prognostic and disease severity markers, indicating its potential prognostic value. SctO2 is determined mainly by end-tidal CO2 pressure, mean arterial pressure, and hemoglobin in the HF population. This article demonstrates a protocol that integrates SctO2 using NIRS into incremental CPET on a calibrated bicycle ergometer.
Cardiopulmonary exercise testing (CPET) has been applied in patients with heart failure with reduced ejection fraction (HF) for multiple aims, including the quantification of cardiopulmonary fitness, prognosis, diagnosing causes of exercise limitations, and exercise prescriptions1,2,3. During testing, hemodynamic variables and data derived from automatic gas exchange are monitored and analyzed. Cerebral tissue oxygen saturation (SctO2) monitoring has value for grading prognosis and disease severity4,5.
....The following protocol was approved by the ethics committee in Chang Gung Memorial Hospital, Linkou, Taiwan. The exercise test was carried out in an air-conditioned laboratory with an atmospheric temperature of 22-25 °C, pressure of 755 to 770 Torr, and relative humidity of 55-65%. Before each test, the gas analyzer was calibrated following the manufacturer's instructions using room air and a gas mixture of known concentration (FO2: 0.12; FCO2: 0.05; N2 as balance). The turbine f.......
Thirty-four HF patients and 17 healthy controls were enrolled at Linkou Chang Gung Memorial Hospital, Taiwan. Each subject underwent cardiopulmonary exercise testing that incorporated SctO2 monitoring by NIRS. Briefly, SctO2 (rest; peak) values were significantly lower in the HF group (66.3 ± 13.3%; 63.4 ± 13.8%,) than in the control (73.1 ± 2.8%; 72 ± 3.2%) group (Figure 1). In the HF group, SctO2 at rest .......
Cerebral oxygenation monitored noninvasively and continuously by NIRS has been applied in various scenarios, including cardiovascular surgery13 and brain functional analyses such as those that estimate neural activity14. This protocol integrated NIRS into conventional CPET to identify the involvement of the cerebral hemodynamic response in exercise intolerance in patients with HF. It increases the value of exercise testing in determining prognosis and disease severity.
.......The patient who participated in exercise testing is deeply appreciated. This research was supported by National Science Council, Taiwan (NMRPG3G6231/2/3), Chang Gung Memorial Hospital (Grant No. CMRPG3G0601/2), and Healthy Aging Research Center, Chang Gung University and the Taiwan Ministry of Education's Higher Education Deep Plowing Program (Grant Numbers EMRPD1H0351 and EMRPD1H0551).
....Name | Company | Catalog Number | Comments |
Bicycle ergometer | Ergoline, Germany | Ergoselect 150P | |
Cardiopulmonary exercise testing gas analysis | Cardinal-health Germany | MasterScreen CPX | |
Finger pulse oximetry | Nonin Onyx, Plymouth, Minnesota | Model 9500 | |
Sphygmomanometer | SunTech Medical, UK | Tango |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved