JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The current work proposes a multimodal evaluation protocol focused on metacognitive, self-regulation of learning, and emotional processes, which make up the basis of the difficulties in adults with LDs.

Abstract

Learning disabilities (LDs) encompass disorders of those who have difficulty learning and using academic skills, exhibiting performance below expectations for their chronological age in the areas of reading, writing, and/or mathematics. Each of the disorders making up the LDs involve different deficits; however, some commonalities can be found within that heterogeneity, such in terms of learning self-regulation and metacognition. Unlike in early ages and later educational levels, there are hardly any evidence-based evaluation protocols for adults with LDs. LDs influence academic performance but also have serious consequences in professional, social, and family contexts. In response to this, the current work proposes a multimodal evaluation protocol focused on metacognitive, self-regulation of learning, and emotional processes, which make up the basis of the difficulties in adults with LDs. The assessment is carried out through analysis of the on-line learning process using a variety methods, techniques, and sensors (e.g., eye tracking, facial expressions of emotion, physiological responses, concurrent verbalizations, log files, screen recordings of human-machine interactions) and off-line methods (e.g., questionnaires, interviews, and self-report measures). This theoretically-driven and empirically-based guideline aims to provide an accurate assessment of LDs in adulthood in order to design effective prevention and intervention proposals.

Introduction

Specific learning disorders (SLDs) encompass disorders of those who have difficulty learning and using academic skills, exhibiting performance below expectations for their chronological age in the areas of reading, writing, and/or mathematics1,2. There are different estimations of prevalence rates depending on the age, language and culture analyzed but they are between 5% and 15%1,3. Within the global category of neurodevelopmental disorders in the Diagnostic and Statistical Manual of Mental Disorders (5th Ed.)1, it is also necessary to focus on the incidence of Attention-Deficit/Hyperactivity Disorder (hereinafter ADHD) as it is a common disorder that has given rise to various controversies about how to approach it in recent years. Based on the DSM-51, it can be defined as a pattern of persistent behaviors of inattention and/or hyperactivity-impulsivity. Likewise, autism spectrum disorder (hereinafter ASD) is a category in the same manual that includes students who present neurodevelopmental disorders as a result of multifactorial dysfunctions of the central nervous system, which result in qualitative dysfunctions in three fundamental areas of the development of the person: social interaction, communication and interests and behaviors1,2.

On these lines, a new concept has emerged moving away from the sense of deficit and offering a more positive approach to these disorders to be consistent with current ideas of neurodevelopmental difficulties as highly coexistent and overlapping4. From these new models, it is understood that the skills involved in high-level cognitive processes, which allow managing and regulating one's behavior in order to achieve a desired goal, are crucial for self-regulation and, therefore, for activities of daily living, including the academic ones5. In the context of adulthood, neurodiversity has evolved to include various types of difficulties, including ADHD and ASD, as well as dyslexia, dyspraxia, and/or dyscalculia. Accordingly, we are approaching this neurodiversity from a broad conception of learning difficulties (LDs). The increase in students with this diversity enrolled in postsecondary education is well documented and is due, in part, to the increase in high school graduation rates for students with disabilities6, but at the same time, there is less research about the learning process of these students than necessary7.

Each of the disorders approached in isolation involve different deficits and manifestations; however, some commonality can be found within that heterogeneity in terms of LD, such as metacognitive, self-regulatory, and emotional malfunctioning8,9,10,11. Three fundamental foundations in the literature of learning in general, and LDs in particular, that represent the basis of successful learning and play an essential role in these well-known difficulties at the academic level12. As well as this, other approaches understand that there could be a certain commonality between deficits in executive functions, such as problems in automatic processing or working memory, that occur in different disorders such as ADHD and reading disorders13 or ADHD and ASD5. However, there is still work to be done in this field, since not all studies reach the same conclusions about these points in common in relation to executive functions. It could be due to the variations presented by the samples from which the studies are based and the evaluation procedures of the executive functions used in the investigations5,14.

In educational terms, this diverse mix affects not only the quality of learning, due to the fundamental nature of the affected functions, but also phenomena such as school dropout, change of degree, etc., with economic implications for governments and universities15. The dropout rate for students with LDs is higher than for students in the general population16 but also higher than the dropout rates for any other category of psychological disabilities except for those students with emotional disturbances17. In contrast, the number of students with LDs who are accessing post-compulsory education (vocational training, college, etc.) is increasing15, specifically in higher education19,20,21,22. Moreover, one might well assume that there are many more students with LD than those who officially pass through student services and typically make up the prevalence statistics23.

These difficulties are not always detected during childhood, especially in adults born before these disorders were considered in the regular academic system, and the symptoms of these disorders persist throughout people’s lives and cause difficulties in work, education and personal lives24. Research has shown that although people might overcome some of their difficulties, most continue to exhibit struggles with learning during adulthood and their persistence is still problematic at those higher educational levels25.

Paradoxically, unlike in previous educational levels and earlier ages, there are hardly any evidence-based instruments or evaluation protocols for adults with LDs. Despite the proliferation of diagnostic tools to evaluate LDs during childhood, the availability of valid, reliable instruments and methodologies for the adult population is significantly limited24. A recent literature review about learning disabilities in higher education found that most of the information collected in this regard is done through interviews, and only occasionally are self-report questionnaires used26. Self-report methodology and interviews, although valuable, are not enough to accurately assess metacognitive, self-regulation, and emotional skills processes, in fact, among others, because of the process nature. The importance of scales and interview methodology for measuring those processes is undeniable27,28, but so too are the associated problems of validity29 and incongruence with other innovative methods of assessment30. An additional problem in the detection of LDs is the bias in the diagnosis of the disorder due to the absence of comprehensive assessment protocols. The fact that professionals do not have a reference protocol based on objective variables is frequently causing many false positive and false negative cases of LDs31.

In response to both scarcity of instruments for adults and the need to improve existing methodology, the current study proposes a multimodal evaluation protocol focused on metacognitive, self-regulation, and emotional processes, which make up the basis of the difficulties in adults with LDs. In line with the current literature, we propose a move toward integrative and multichannel measurement32,33. The assessment is carried out through an analysis of the on-line learning process using several methods, techniques, and sensors (e.g., hypermedia learning environment, virtual reality, eye tracking, facial expressions of emotion, physiological responses, log files, screen recordings of human-machine interactions) and off-line methods (e.g., questionnaires, interviews, and self-report measures). This mixed methodology provides evidence of the deployment of target processes before, during, and after learning that can be triangulated to enhance the understanding of how students learn and where the problem lies, if there is one34.

The evaluation protocol is carried out over two sessions. The sessions can be done in one sitting or may need partial applications depending on the person. The first is focused on the detection or confirmation of LDs and what specific kind of disorder we are facing, and the second is designed to go into the metacognitive, self-regulation, and emotional processes of each individual case in depth.

Session 1 is intended to be a diagnostic or confirmation assessment of the participant’s learning disabilities: SLD, ADHD and/or ASD (high functioning) to determine what type of specific problems the participants have. This assessment is essential for two reasons. 1) Adults with Learning Disabilities rarely have accurate information about their dysfunctional behavior. Some of them suspect that they have a LD but have never been evaluated. Others may have been assessed when they were children but do not have any reports or further information. 2) There may be discrepancies with previous diagnoses (e.g., a previous dyslexia diagnosis as opposed to a current diagnosis of attention deficit and slow processing speed; previous ASD diagnosis in contrast to current limited intellectual ability, etc.). The participant is interviewed, and questionnaires and standardized tests are applied. This session here is carried out by therapists with experience in diagnosing developmental and learning difficulties in the research and clinical context in different offices of a Spanish Psychology Faculty. The session begins with a structured interview that collects biographical information along with the presence of symptoms related to SLDs that are referred to in the DSM-51. Following that, the reference intellectual ability test WAIS-IV35 is used in case of exclusion criterion implementation and because it provides very valuable information for learning difficulties from the scales “work memory” and “processing speed”36. Additionally, the PROLEC SE-Revised Test37 is extensively used to evaluate reading disabilities (lexical, semantic and/or syntactic processes of reading), one of the most prevalent and disabling difficulties for learning in current academic contexts, which overlaps with other disorders such as ADHD38. This evaluation collects reading accuracy, speed and fluency along with reading disabilities, and more importantly, in which reading process the failure occurs37 (this test has been evaluated with pre-university students. Currently, there are no tests in Spain that are adapted to the general adult population, so this test was selected because it is the closest to the target population). Then, we screen symptoms of ADHD through the World Health Organization Adult ADHD Self-Report Scale (ASRS)39 and refine the evaluation of this disorder, introducing multimodality with a cutting-edge virtual reality continuous performance test for the evaluation of attentional processes and working memory in adults, the Nesplora Aquarium31,40. This test is a very useful tool when diagnosing ADHD in adults and adolescents over 16 years old in an ecological scenario, providing objective, reliable data. It evaluates selective and sustained attention, impulsivity, reaction time, auditory and visual attention, perseverance, quality of attentional focus, motor activity, work memory and cost of change of task. Additionally, along with the WAIS-IV35 as a whole for collecting information about the participant’s intellectual ability, we pay special attention to the scales “work memory” and “processing speed” because they are related to learning difficulties and the results of these scales are used in the final decision. Finally, we include the Autism Spectrum Quotient (AQ-Short)41 in the protocol, the short version of the reliable AQ-Adult from Baron-Cohen, Wheelwright, Skinner, Martin and Clubley42.

Session 2 focuses on a multimodal assessment of the participant’s learning process. The key to understanding complex learning lies in understanding the deployment of students’ cognitive, metacognitive, motivational, and affective processes43. To that end, participants work with MetaTutor, where the use of metacognitive and cognitive strategies deployed are observed while they are learning. MetaTutor is a hypermedia learning environment that is designed to detect, model, trace, and foster students’ self-regulated learning while learning different science topic44. The design of MetaTutor is based on extensive research by Azevedo and colleagues43,45,46,47 and belongs to a new trend in the measurement of SRL, the so called third wave, which is characterized by combined use of measurement and advanced learning technologies33. The use of MetaTutor also provides multimodal trace data, incorporating measures such as, eye tracking, emotional physiological responses (galvanic skin response (GSR) and facial expressions of emotions)48, log-data and questionnaires. All these measures are combined to reach a deeper understanding of the participants SRL and metacognition.

Eye tracking provides an understanding of what attracts immediate attention, which target elements are ignored, in which order elements are noticed, or how elements compare to others; electrodermal activity lets us know how emotional arousal changes in response to the environment; facial-emotion-recognition allows the automatic recognition and analysis of facial expressions; and data logging collects and stores the student´s interaction with the learning environment for further analysis. Concerning the questionnaires, the Mini International Personality Item Pool49 informs about a range of activities and thoughts that people experience in everyday life assessing each of the five major personality traits (extraversion, agreeableness, conscientiousness, neuroticism and openness). The Connotative Aspects of Epistemological Beliefs50 provides information about participants’ beliefs about knowledge. The Rosenberg Self-esteem scale shows how the participants feel about themselves overall51. The Emotion Regulation Questionnaire52 provides information about participants’ emotion regulation. The Achievement Emotions Questionnaire (AEQ)53 informs about emotions typically experienced at university.

In short, assessing LDs during adulthood is particularly difficult. Education and experience allow many adults to compensate for their deficits and later show undifferentiated or masked symptoms, on which scientific knowledge is still scarce. Taking into account the critical research gap that arises, this current work aims to ensure theoretically-driven, empirically-based guidelines for accurate assessment of LDs during adulthood in order to design effective prevention and intervention actions.

To help readers decide whether the method described is appropriate or not, it is necessary to specify that the protocol is not suitable for people with intellectual disabilities because their diagnosis invalidates the diagnosis of learning difficulties. In addition, due to the singularities of the equipment used and the format of showing the learning content, it is still not possible to evaluate people with motor disabilities (upper limbs, neck and/or face), hearing or visual impairment. Nor would it be suitable for participants with severe psychiatric disorders. It would require the use of drugs that could alter information processing or the physiological expression of emotions.

Access restricted. Please log in or start a trial to view this content.

Protocol

The research ethics committee of the Principality of Asturias and the University of Oviedo approved this protocol.

1. Session 1: diagnosis assessment

NOTE: In this session of the protocol, evaluation tests from different publishers are used, which have their own specific application and interpretation manuals. Since these tests, or other similar ones, are widely known by the scientific community in the field of psychology and education, the procedure to apply them is not detailed step by step (for example, given the aim of this paper, it does not make sense to detail each step of the WAIS-IV35 application).

  1. Informed consent
    1. Explain to the participants the ethical and confidentiality aspects of the research and ask them to acknowledge and sign the individual informed consent.
  2. Structured interview
    1. Explain the following instructions to the participant: "Now, I´m going to interview you in order to get important information about your life and academic issues. There are open and closed questions but you can interrupt me whenever you want. Please, let me know if you need me to clarify any point. After this initial interview, I may ask you to do some evaluation tests and questionnaires. I will tell you the specific instructions for each one. Are you ready?"
    2. Collect the biographical information along with the presence of symptoms related to SLD and exclusion criteria that are referred in the DSM-51 following the interview script (see Supplemental File A ).
  3. First decision point in relation to the structured interview (exclusion criteria)
    1. Finish the assessment if the participant meets the initial exclusion criteria, that is, they explain that they have a motor disability (upper segments), sensory disability (visual or auditory), a diagnosis of intellectual disability or a serious mental disorder.
    2. Continue the assessment if it seems that the participant has or thinks he/she has an SLD and does not meet exclusion criteria.
  4. Intellectual ability
    1. Apply the WAIS-IV35 test to collect information about participant’s intellectual ability following the instructions in the manual.
  5. Second decision point in relation to intellectual ability (exclusion criteria)
    1. Finish the assessment if the participant does not understand the instructions of the test, if cannot be evaluated, or they have an IQ of less than 70.
    2. Continue the assessment if the person has normal or limited intellectual ability.
      NOTE: The limit of the IQ accepted in the present study has been set as a score of over 70.
  6. ADHD
    1. Ask the participant to complete the six items of the Self-reported Screening Questionnaire of the Adult-v1.1. (ASRS39) of the World Health Organization (WHO) International Composed Diagnostic Interview.
      NOTE: This questionnaire provides information on the presence of symptoms related to ADHD that are referred to in the DSM-IV54.
    2. Apply the Nesplora Aquarium test40 if the participant scores 12 or more in the previous ASRS36 questionnaire.
  7. Reading difficulties
    1. Apply the PROLEC SE-R Screening Test of reading difficulties37 follow the instructions in the manual.
  8. Autism spectrum disorder (level 1)
    1. Ask the participant to complete the 28 items of the Autism Spectrum Quotient (AQ-Short) questionnaire from Hoekstra et al.41
      NOTE: This questionnaire provides information on the presence of symptoms related to social behavior, social skills, routine, switching, imagination and numbers/patterns.
  9. Analyze the results.
    1. Analyze each participant’s interview, questionnaires and test results and decide if they have significant learning difficulties or not or are at risk of having them.
      NOTE: Two members of the expert committee (the evaluator and another member of the research team) analyze each participant’s learning profile and decide if they is a student with SLD, ADHD and/or ASD or not or are at risk of having them. No test can substitute the expert´s judgment.
  10. Final decision point
    1. Finish the assessment if the participant is clearly not a student with learning difficulties.
    2. Continue the assessment if the participant is a person with LDs (or at risk) and go to Session 2.

2. Session 2: multimodal assessment

NOTE: Session 2 must be done between 1 and 7 days after Session 1.

  1. Prepare the participant.
    1. Remind the participants that the session lasts approximately 2 hours, and that they are going to complete some questionnaires and tasks in the MetaTutor learning environment while some devices are recording their performance throughout the session.
    2. Ask the participants tie back their hair, clear their neck, remove their glasses and remove chewing gum if applicable.
      NOTE: If the participant is wearing glasses, has long hair or bangs that cover part of their face, the eye tracker will not be able to read their eyes movements.
    3. Introduce MetaTutor to the participants. Explain that the objective of the session is to autonomously learn about the circulatory system using the tool.
    4. Make sure the speakers are connected and working.
      NOTE: The participant can also use headphones if preferred.
  2. Galvanic skin response preparation and calibration
    NOTE: Remember that there are many types of GSRs manufactured by different companies. Use it according to the supplier's specifications.
    1. Clean the GSR and the participant´s fingers with alcohol.
    2. Put the finger/wristband GSR sensors on the index and ring fingers with the connectors on the fingertip side or according to the manufacturer's instructions.
    3. Ask the participant to rest their hand on the table quietly and try to relax for 5 min.
    4. Open the software in the computer.
    5. Make sure the registration graph is working. Check the registration graph is registering.
    6. Click Run experiment > Rate 10 per second > Duration > 10 > Minute. Record the information for ten minutes to establish the baseline.
      NOTE: Rate 10 per second means the frequency with which measures are taken.
    7. Minimize the screen.
    8. Continue with the calibration of other devices, and after 10 minutes save the information in a .csv file.
  3. Eye tracking and webcam preparation and calibration
    NOTE: Remember that there are many types of eye tracking and webcam manufactured by different companies. Use them according to the supplier's specifications.
    1. Open the software in the side laptop and in the computer.
      NOTE: The eye movements are captured on the PC the participant is working on, but the data is recorded on the side laptop. In addition, in the side laptop, the experimenter can see the movements that the participant is making and correct the participant’s position if necessary.
    2. Indicate which session will be recorded (Metatutor in this case) and the participant’s registration data: File > Recent Experiment > Metatutor > Include Registration data of the participant > OK.
    3. Check that the two computers are connected to each other and that the eye tracking infrared lights are on and ready to capture the movement of the eyes.
    4. Adjust the webcam on the computer to the participant’s position.
    5. Ask the participant to sit facing forward and be as neutral as possible, although it is expected that their facial expressions will vary during the learning session.
      NOTE: During the learning session a video of the participant´s face is recorded with the webcam which is later analyzed using a desktop app55.
    6. Ask the participant to be still and to stare at the different points of the screen with their nose put in line with/slightly over the edge of the desk (at 90°).
    7. Click Record > Write the registration data of the participant > Ok to start the calibration process.
    8. Ask the participant to press the space bar and follow the points on the screen with their eyes.
    9. Make sure that the participant’s eyes, when looking at the screen, are centered before moving on to the next step, using the side laptop to check this information.
      NOTE: The participant's gaze is centered when the movements of their eyes are registered on the side laptop screen with two white circles. When the gaze leaves the registration area, the software warns with yellow arrows (if slightly deviated), with red arrows (if deviated a lot) or without white circles (if not registering). The path of the movement of the eyes is reflected with a yellow light (attentional focus) and the track through the screen with a green line.
    10. Ask the participants to avoid touching their face or resting their head in their hands as much as possible.
    11. Minimize the screen.
  4. Multimodal tracking of the learning session
    1. Maximize the GSR screen and click Run experiment > Rate 10 per second > Duration > 5 > hours > Record and minimize the screen again.
    2. Maximize the eye tracking and webcam screen, make sure the software is working correctly, click Record on the computer and on the side laptop to register and record the session and minimize the screen again.
      NOTE: Once the devices have been calibrated, do not forget to start recording the evaluation session in each of them. From this point, the entire participant interaction with the learning tool will be recorded until the end of the session.
  5. Questionnaires and learning session in MetaTutor
    1. Open the software in the PC and complete the participant’s registration data. Complete ID > Experimenter > Day > Questionnaires yes > Continue.
      NOTE: All the logs will be registered during the session in a file-data log.
    2. Explain to the participant that they must follow the instructions in the tool and that they will only be interacting with the computer during the learning session. Explain that the researcher will be in the next room in case anything happens.
      1. Ask the participant for sociodemographic and academic information. Complete Name > Gender > Age > Ethnic group > Educational level > University > Degree > GPA > Information about biology courses taken if applicable > Continue. Before clicking Continue, explain to the participants that they must follow all the instructions that the tool will give them. Also, that they will only interact with the computer during the learning session.
      2. Ask the participant to complete some questionnaires.
        NOTE: The participant has to complete five metacognitive and self-regulated learning questionnaires: a) The Mini International Personality Item Pool49; b) The Connotative Aspects of Epistemological Beliefs50; c) The Rosenberg Self-esteem Scale51; d) The Emotion Regulation Questionnaire52; e) The Achievement Emotions Questionnaire (AEQ)53 and one questionnaire about general knowledge about the circulatory system.
      3. Show the participant the interface of MetaTutor and its different parts.
        1. Explain the participant that the content area is where the learning content is displayed throughout the session in text form.
        2. Show the participant that they can navigate through a table of contents at the side of the screen to go to different pages.
        3. Show the participant that the overall learning goal is displayed at the top of the screen during the session.
        4. Show the participant that the sub-goals learners set are displayed at the top in the middle of the screen, and they can manage sub-goals or prioritize them here.
        5. Show the participant that there is a timer located at the top left corner of the screen displays the amount of time remaining in the session.
        6. Show the participant the list of self-regulating processes, which are displayed in a palette on the right hand side of the screen, and the participant can click on them throughout the session to deploy planning, monitoring and learning strategies.
        7. Show the participant the static images relevant to content pages are displayed beside the text to help learners coordinate information from different sources.
        8. Show the participant the text entered on the keyboard and how students´ interactions with agents are displayed and recorded in this part of the interface.
        9. Show the participant the four artificial agents who help students in their learning throughout the session.
          NOTE: These agents are Gavin the Guide, Pam the Planner, Mary the Monitor, and Sam the Strategizer.
      4. Ask the participant to click Start to begin the learning session whenever they are ready.
        NOTE: The participant interacts with the tool.
      5. Once the session is finished, ask the participant to complete the knowledge questionnaire again.

3. Logoff

  1. At the end of the session save the recorded data from GSR, eye tracking/webcam and Metatutor along with the registration data of the participant. Extract the data in a .csv file for easier use.
  2. Remove the GSR sensors from the participant's hand and clean the galvanic sensors with alcohol again.
  3. Thank the participants for their collaboration and say goodbye.

4. Analysis of learning difficulties

  1. Analyze each participant’s learning performance based on the different reports produced (see Results section) to obtain a multimodal profile.
    NOTE: At least two members of the expert committee analyze each participant’s learning process. Although the evaluation can be done exhaustively using new instruments and tools, no report can replace the expert's judgment.

Access restricted. Please log in or start a trial to view this content.

Results

This section illustrates the representative results obtained from the protocol, including an example of conjoint results of Session 1 and an example of each source of information from Session 2.

The results about disorders are collected in Session 1 through diagnostic tests taking into account the procedures and cut-off points specified for the diagnostic assessment of participants’ learning difficulties (SLD, ADHD, and ASD). The expert committee decides whether the participant has learn...

Access restricted. Please log in or start a trial to view this content.

Discussion

The current protocol proposes a multimodal evaluation focused on metacognitive, self-regulation, and emotional processes, which make up the basis of the difficulties in adults with LDs.

Session 1 is essential because it is intended to be a diagnostic assessment of the participant’s learning disabilities. Note that this session here is carried out by therapists with experience in diagnosing developmental and learning difficulties in the research and clinical context. We use these tools in...

Access restricted. Please log in or start a trial to view this content.

Disclosures

The authors have nothing to disclose.

Acknowledgements

This manuscript was supported by funding from the National Science Foundation (DRL#1660878, DRL#1661202, DUE#1761178, DRL#1916417), the Social Sciences and Humanities Research Council of Canada (SSHRC 895-2011-1006), the Ministry of Sciences and Innovation I+D+i (PID2019-107201GB-100), and the European Union through the European Regional Development Funds (ERDF) and the Principality of Asturias (FC-GRUPIN-IDI/2018/000199). Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or Social Sciences and Humanities Research Council of Canada. The authors would also like to thank members of the SMART Lab at UCF for their assistance and contributions.

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
AQUARIUMNesplora
Eye-tracker RED500 SystemsSensoMotoric Instruments GmbH
Face APIMicrosoft
GSR NUL-217NeuLog

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed.). , Washington,DC. (2013).
  2. World Health Organization. International statistical classification of diseases and related health problems (11th Revision). , Retrieved from https://icd.who.int/browse11/l-m/en (2018).
  3. Education's Individuals with Disabilities Education Act. 2018 Annual Report to Congress on the Individuals with Disabilities Education Act. , Available from: https://sites.ed.gov/idea/data (2018).
  4. Armstrong, T. The myth of the normal brain: Embracing neurodiversity. AMA Journal of Ethics. 17 (4), 348-352 (2015).
  5. Berenger, C., Roselló, B., Miranda, A., Baixauli, I., Palomero, B. Executive functions and motivation in children with autism spectrum disorder and attention deficit hyperactivity disorder. International Journal of Developmental and Educational Psychology. 1 (1), 103-112 (2016).
  6. Brinkerhoff, L. C., McGuire, J. M., Shaw, S. F. Postsecondary education and transition for students with learning disabilities (2nd ed.). , Pro-ed. Austin, TX. (2002).
  7. Allsopp, D. H., Minskoff, E. H., Bolt, L. Individualized course-specific strategy instruction for college students with learning disabilities and ADHD: Lessons learned from a model demonstration project. Learning Disabilities Research & Practice. 20 (2), 103-118 (2005).
  8. Crane, N., Zusho, A., Ding, Y., Cancelli, A. Domain-specific metacognitive calibration in children with learning disabilities. Contemporary Educational Psychology. 50, 72-79 (2017).
  9. Harris, K. R., Reid, R. R., Graham, S. Self-regulation among students with LD and ADHD. Learning about Learning Disabilities. Wong, B. , Academic Press. Orlando, FL. 167-195 (2004).
  10. National Joint Committee on Learning Disabilities. Collective Perspectives on Issues Affecting Learning Disabilities. , PRO-ED. Austin, Texas. (1994).
  11. Sawyer, A. C., Williamson, P., Young, R. Metacognitive processes in emotion recognition: Are they different in adults with Asperger's disorder. Journal of Autism and Developmental Disorders. 44 (6), 1373-1382 (2014).
  12. Meltzer, L. Executive function in education: From theory to practice. , Guilford Publications. New York. (2018).
  13. Martino, G., Capri, T., Castriciano, C., Fabio, R. A. Automatic Deficits can lead to executive déficits. Mediterranean Journal of Clinical Psychology. 5 (3), 1-31 (2017).
  14. Fabio, R. A., et al. Frequency bands in seeing and remembering: comparing ADHD and typically developing children. Neuropsychological Trends. 24, 97-116 (2018).
  15. Bernardo, A. B., Esteban, M., Cerezo, R., Muñiz, L. J. Principales variables influyentes en el abandono de titulación en la Universidad de Oviedo. Informe PRIOR: PRoyecto Integral de ORientación Académico-Profesional. , Universidad de Oviedo. Oviedo. (2013).
  16. Cortiella, C. Diplomas at risk: A critical look at the graduation rate of students with learning disabilities. , National Center for Learning Disabilities. New York, NY. (2013).
  17. Plasman, J. S., Gottfried, M. A. Applied STEM coursework, high school dropout rates, and students with learning disabilities. Educational Policy. 32 (5), 664-696 (2018).
  18. Cortiella, C., Horowitz, S. H. The state of learning disabilities: Facts, trends and emerging issues (3rd Ed). , National Center for Learning Disabilities. New York. (2014).
  19. Chevalier, T. M., Parrila, R., Ritchie, K. C., Deacon, S. H. The role of metacognitive reading strategies, metacognitive study and learning strategies, and behavioral study and learning strategies in predicting academic success in students with and without a history of reading difficulties. Journal of Learning Disabilities. 50 (1), 34-48 (2017).
  20. Goroshit, M., Hen, M. Academic procrastination and academic performance: Do learning disabilities matter. Current Psychology. , 1-9 (2019).
  21. Grinblat, N., Rosenblum, S. Why are they late? Timing abilities and executive control among students with learning disabilities. Research in Developmental Disabilities. 59, 105-114 (2016).
  22. Heiman, T., Fichten, C. S., Olenik-Shemesh, D., Keshet, N. S., Jorgensen, M. Access and perceived ICT usability among students with disabilities attending higher education institutions. Education and Information Technologies. 22 (6), 2727-2740 (2017).
  23. Couzens, D., et al. Support for students with hidden disabilities in universities: A case study. International Journal of Disability. Development and Education. 62 (1), 24-41 (2015).
  24. Schelke, M. W., et al. Diagnosis of developmental learning and attention disorders in adults: A review of clinical modalities. Neurology, Psychiatry and Brain Research. 23, 27-35 (2017).
  25. Madaus, J. W., Shaw, S. F. The impact of the IDEA 2004 on transition to college for students with learning disabilities. Learning Disabilities Research & Practice. 21 (4), 273-281 (2006).
  26. Santos, C. G., Fernández, E., Cerezo, R., Núñez, J. C. Dificultades de aprendizaje en Educación Superior: un reto para la comunidad universitaria. Publicaciones. 48 (1), 63-75 (2018).
  27. Jiménez, L., García, A. J., López-Cepero, J., Saavedra, F. J. The brief-ACRA scale on learning strategies for university students. Revista de Psicodidáctica. 23 (1), 63-69 (2018).
  28. Zimmerman, B. J. Motivational sources and outcomes of self-regulated learning and performance. Handbook of Self-Regulation of Learning and Performance. Zimmerman, B. J., Schunk, D. H. , Routledge. NY. 49-65 (2011).
  29. Pike, G. R., Kuh, G. D. A tipology of student engagement for Amer-ican colleges and universities. Research in Higher Education. 46, 185-209 (2005).
  30. Winne, P. H., Perry, N. E. Measuring self-regulated learning. Handbook of Self-Regulation. Boekaerts, M., Pintrich, P. R., Zeidner, M. , Elsevier Academic Press. San Diego, CA. 531-566 (2000).
  31. Areces, D., Cueli, M., García, T., González-Castro, P., Rodríguez, C. Using brain activation (nir-HEG/Q-EEG) and execution measures (CPTs) in an ADHD assessment protocol. Journal of Visualized Experiments. (134), e56796(2018).
  32. Azevedo, R., Taub, M., Mudrick, N. V. Understanding and reasoning about real-time cognitive, affective, and metacognitive processes to foster self-regulation with advanced learning technologies. Handbook of Self-Regulation of Learning and Performance. Alexander, P. A., Schunk, D. H., Greene, J. A. , Routledge. New York. (2017).
  33. Panadero, E., Klug, J., Järvelä, S. Third wave of measurement in the self-regulated learning field: when measurement and intervention come hand in hand. Scandinavian Journal of Educational Research. 60 (6), 723-735 (2016).
  34. Greene, J. A., Azevedo, R. The measurement of learners' self-regulated cognitive and metacognitive processes while using computer-based learning environments. Educational Psychologist. 45 (4), 203-209 (2010).
  35. Wechsler, D. A. Wechsler Adult Intelligence Scale (4th ed.). , Psychological Corporation. San Antonio, TX. (2008).
  36. Theiling, J., Petermann, F. Neuropsychological profiles on the WAIS-IV of adults with ADHD. Journal of Attention Disorders. 20 (11), 913-924 (2016).
  37. Cuetos, F., Arribas, D., Ramos, J. L. Prolec-SE-R, Batería para la evaluación de los procesos lectores en Secundaria y Bachillerato - Revisada. , TEA. Madrid. (2016).
  38. Mayes, S. D., Calhoun, S. L., Crowell, E. W. Learning disabilities and ADHD: Overlapping spectrum disorders. Journal of Learning Disabilities. 33 (5), 417-424 (2000).
  39. Kessler, R. C., et al. The World Health Organization Adult ADHD Self-Report Scale (ASRS): a short screening scale for use in the general population. Psychological Medicine. 35 (2), 245-256 (2005).
  40. Climent, G., Banterla, F., Iriarte, Y. AULA: Theoretical manual. , Nesplora. San Sebastián, Spain. (2011).
  41. Hoekstra, R. A., et al. The construction and validation of an abridged version of the autism-spectrum quotient (AQ-Short). Journal of Autism and Developmental Disorders. 41, 589-596 (2010).
  42. Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., Clubley, E. The autism-spectrum quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders. 31, 5-17 (2001).
  43. Azevedo, R., Johnson, A., Chauncey, A., Burkett, C. Self-regulated learning with MetaTutor: Advancing the science of learning with MetaCognitive tools. New Science of Learning. Khine, M., Saleh, I. , Springer. New York, NY. 225-247 (2010).
  44. Azevedo, R., Witherspoon, A., Chauncey, A., Burkett, C., Fike, A. MetaTutor: A MetaCognitive tool for enhancing self-regulated learning. 2009 AAAI Fall Symposium Series. , (2009).
  45. Azevedo, R. Theoretical, methodological, and analytical challenges in the research on metacognition and self-regulation: A commentary. Metacognition & Learning. 4 (1), 87-95 (2009).
  46. Feyzi-Behnagh, R., Trevors, G., Bouchet, F., Azevedo, R. Aligning multiple sources of SRL data in MetaTutor: Towards interactive scaffolding in multi-agent systems. 18th biennial meeting of the European Association for Research on Learning and Instruction (EARLI). , Munich, Germany. Paper presented (2013).
  47. Harley, J. M., et al. Assessing learning with MetaTutor: A Multi-Agent Hypermedia Learning Environment. Annual meeting of the American Educational Research Association. , Philadelphia, PA. Paper presented (2014).
  48. Azevedo, R., Feyzi-Behnagh, R., Harley, J., Bouchet, F. Analyzing temporally unfolding self-regulatory process during learning with multi-agent technologies. EARLI Biannual Conference 2013. , Munich. Paper presented (2013).
  49. Donnellan, M. B., Oswald, F. L., Baird, B. M., Lucas, R. E. The mini-IPIP scales: tiny-yet-effective measures of the Big Five factors of personality. Psychological Assessment. 18 (2), 192(2006).
  50. Stahl, E., Bromme, R. The CAEB: An instrument for measuring connotative aspects of epistemological beliefs. Learning and Instruction. 17 (6), 773-785 (2007).
  51. Gray-Little, B., Williams, V. S. L., Hancock, T. D. An item response theory analysis of the Rosenberg Self-Esteem Scale. Personality and Social Psychology Bulletin. 23, 443-451 (1997).
  52. Gross, J. J., John, O. P. Individual differences in two emotion regulation processes: implications for affect, relationships, and well-being. Journal of Personality and Social Psychology. 85 (2), 348(2003).
  53. Pekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P., Perry, R. P. Measuring emotions in students' learning and performance: The Achievement Emotions Questionnaire (AEQ). Contemporary Educational Psychology. 36 (1), 36-48 (2011).
  54. American Psychiatric Association. Diagnostic and statistical manual of mental disorders - reviewed (DSM-IV-TR). , Washington, DC. (2000).
  55. Face API [Computer software]. , Available from: https://azure.microsoft.com/es-es/services/cognitive-services/face/ (2019).
  56. Picard, R. W. Affective computing. , MIT press. (2000).
  57. Grills-Taquechel, A. E., Fletcher, J. M., Vaughn, S. R., Stuebing, K. K. Anxiety and reading difficulties in early elementary school: Evidence for unidirectional-or bi-directional relations. Child Psychiatry & Human Development. 43 (1), 35-47 (2012).
  58. Mammarella, I. C., et al. Anxiety and depression in children with nonverbal learning disabilities, reading disabilities, or typical development. Journal of Learning Disabilities. 49, 130-139 (2014).
  59. Nelson, J. M., Harwood, H. Learning disabilities and anxiety: A meta-analysis. Journal of Learning Disabilities. 44 (1), 3-17 (2011).
  60. Arora, M. R., Sharma, J., Mali, U., Sharma, A., Raina, P. Microsoft Cognitive Services. International Journal of Engineering Science. 8 (4), 17323-17326 (2018).
  61. Bondareva, D., et al. Inferring learning from gaze data during interaction with an environment to support self-regulated learning. International Conference on Artificial Intelligence in Education. , Springer. Berlin, Heidelberg. 229-238 (2013).
  62. Mason, L., Tornatora, M. C., Pluchino, P. Do fourth graders integrate text and picture in processing and learning from an illustrated science text? Evidence from eye-movement patterns. Computers & Education. 60 (1), 95-109 (2013).
  63. Duffy, M. C., Azevedo, R. Motivation matters: Interactions between achievement goals and agent scaffolding for self-regulated learning within an intelligent tutoring system. Computers in Human Behavior. 52, 338-348 (2015).
  64. Cerezo, R., et al. Mediating Role of Self-efficacy and Usefulness Between Self-regulated Learning Strategy Knowledge and its Use. Revista de Psicodidáctica. 24 (1), 1-8 (2019).
  65. Mudrick, N. V., Azevedo, R., Taub, M. Integrating metacognitive judgments and eye movements using sequential pattern mining to understand processes underlying multimedia learning. Computers in Human Behavior. 96, 223-234 (2019).
  66. Taub, M., Azevedo, R. How Does Prior Knowledge Influence Eye Fixations and Sequences of Cognitive and Metacognitive SRL Processes during Learning with an Intelligent Tutoring System. International Journal of Artificial Intelligence in Education. 29 (1), 1-28 (2019).
  67. Bogarín, A., Cerezo, R., Romero, C. A survey on educational process mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 8 (1), 1230(2018).
  68. Cerezo, R., Bogarín, A., Esteban, M., Romero, C. Process mining for self-regulated learning assessment in e-learning. Journal of Computing in Higher Education. , (2019).
  69. Levenson, R. W. Blood, sweat, and fears. Annals of the New York Academy of Sciences. 1000 (1), 348-366 (2003).
  70. Meer, Y., Breznitz, Z., Katzir, T. Calibration of Self-Reports of Anxiety and Physiological Measures of Anxiety While Reading in Adults With and Without Reading Disability. Dyslexia. 22 (3), 267-284 (2016).
  71. Daley, S. G., Willett, J. B., Fischer, K. W. Emotional responses during reading: Physiological responses predict real-time reading comprehension. Journal of Educational Psychology. 106 (1), 132-143 (2014).
  72. Pekrun, R., Goetz, T., Titz, W., Perry, R. P. Academic emotions in students' self-regulated learning and achievement: A program of qualitative and quantitative research. Educational Psychologist. 37 (2), 91-105 (2002).
  73. Antonietti, A., Colombo, B., Di Nuzzo, C. Metacognition in self-regulated multimedia learning: Integrating behavioural, psychophysiological and introspective measures. Learning, Media and Technology. 40 (2), 187-209 (2015).
  74. Bogarin, A., Cerezo, R., Romero, C. Discovering learning processes using inductive miner: a case study with Learning Management Systems (LMSs). Psicothema. 30 (3), 322-329 (2018).
  75. Lang, C., Siemens, G., Wise, A., Gašević, D. Handbook of learning analytics. , Society for Learning Analytics and Research. Beaumont, AB, Canada. (2017).
  76. Romero, C., Ventura, S., Pechenizkiy, M., Baker, R. S. J. Handbook of educational data mining. , CRC Press. Boca Raton, FL. (2010).
  77. Azevedo, R., Gašević, Analyzing Multimodal Multichannel Data about Self-Regulated Learning with Advanced Learning Technologies: Issues and Challenges. Computers in Human Behavior. 96, 207-210 (2019).
  78. Veenman, M. V. J., Van Hout-Wolters, B., Afflerbach, P. Metacognition and Learning: Conceptual and Methodological Considerations. Metacognition Learning. 1, 3-14 (2006).
  79. Brusilovsky, P., Millán, E. User models for adaptive hypermedia and adaptive educational systems. The adaptive web. Brusilovsky, P., Kobsa, A., Nejdl, W. , Springer. Berlin, Heidelberg. 3-53 (2007).
  80. Taub, M., et al. using multi-channel data with multi-level modeling to assess in-game performance during gameplay with CRYSTAL ISLAND. Computers in Human Behavior. 76, 641-655 (2017).

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Multimodal ProtocolMetacognitionSelf regulationLearning DifficultiesSpecific Learning DisabilitiesEmotional ProcessesAssessment ProtocolEye TrackingEmotional RecognitionGalvanic Skin ResponseInterviewsQuestionnairesInformed ConsentIntellectual AbilityWechsler Adult Intelligence Scale

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved