Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Corals create biodiverse ecosystems important for both humans and marine organisms. However, we still do not understand the full potential and function of many coral cells. Here, we present a protocol developed for the isolation, labeling, and separation of stony coral cell populations.

Abstract

Coral reefs are under threat due to anthropogenic stressors. The biological response of coral to these stressors may occur at a cellular level, but the mechanisms are not well understood. To investigate coral response to stressors, we need tools for analyzing cellular responses. In particular, we need tools that facilitate the application of functional assays to better understand how cell populations are reacting to stress. In the current study, we use fluorescence-activated cell sorting (FACS) to isolate and separate different cell populations in stony corals. This protocol includes: (1) the separation of coral tissues from the skeleton, (2) creation of a single cell suspension, (3) labeling the coral cells using various markers for flow cytometry, and (4) gating and cell sorting strategies. This method will enable researchers to work on corals at the cellular level for analysis, functional assays, and gene expression studies of different cell populations.

Introduction

Coral reefs are one of the most important ecosystems on Earth. They facilitate biodiversity by providing critical habitats for fish and invertebrates and are crucial for sustaining anthropogenic communities by providing food and economic livelihood through tourism1. As the key builder of coral reefs, the coral animal (Phylum: Cnidaria) also aids coastal communities by creating large calcium carbonate frameworks that mitigate wave and storm damage2.

Corals as adults are sessile animals that host a wide array of endosymbiotic partners, including viruses, archaea, bacteria, protists, fungi, and m....

Protocol

1. Dissociation of tissues from coral skeleton via airbrush and compressor

NOTE: Perform steps on ice and protect hands with gloves.

  1. Assemble the airbrush kit by connecting the air compressor, hose, and airbrush (Figure 2). Set the pressure gauge between 276−483 kPa.
    NOTE: The recommended compressor and air hose used for this study was preset to a maximum pressure of 393 kPa. Use outside of this 276-483 kPa range may result in either inade.......

Representative Results

Overall, this protocol is useful because it facilitates the identification and collection of live coral cell populations that can be used for functional analyses. The workflow started with the mechanical separation of coral tissues from the underlying calcium carbonate skeleton (Figure 1). This is one of the most important initial steps because improper technique results in high cell mortality and can create large amounts of debris. Enzymatic separation is no.......

Discussion

This protocol was adapted from Rosental et al.18 and developed for the identification and isolation of P. damicornis cells. The methodology focuses on the process of filtering samples to remove debris, nonviable cells, and Symbiodiniaceae-hosted cells through the examination of cell intrinsic factors, including relative cell size, relative cell granularity, cell autofluorescence, and the presence of intact cellular membranes. These techniques can be applied to other coral species. However.......

Acknowledgements

NTK would like to acknowledge the University of Miami Research Awards in Natural Sciences and Engineering for funding this research. BR would like to thank Alex and Ann Lauterbach for funding the Comparative and Evolutionary Immunology Laboratory. The work of BR was supported by Israel Science Foundation (ISF) numbers: 1416/19 and 2841/19, and HFSP Research Grant, RGY0085/2019. We would like to thank Zhanna Kozhekbaeva and Mike Connelly for technical assistance. We would also like to thank the University of Miami, Miller School of Medicine’s Flow Cytometry Shared Resource at the Sylvester Comprehensive Cancer Center for access to the FACS cytometer and to S....

Materials

NameCompanyCatalog NumberComments
Airbrush Kit & CompressorTCP GlobalABD KIT-H-SETPaasche H Series Single-Action Siphon Feed Airbrush Kit with Master TC-20 Compressor & Air Hose
BD FACSAria IIBD644832
Bone CuttersBulk Reef Supply205357Oceans Wonders Coral Stony Bone Cutter
Cell StrainerCorning35234040 um; BD Falcon; individually wrapped; sterile; nylon
CellRox GreenLife TechnologiesC104442.5 mM in DMSO; Excitation/Emission: 485/520 nm
Collection bagGrainger38UV35Reloc Zippit 6"L x 4"W Standard Reclosable Poly Bag with Zip Seal Closure, Clear; 2 mil Thickness
DAPIInvitrogenD130610mg in H2O; Excitation/Emission: 358/461 nm
Fetal Calf SerumSigma-AldrichF2442-100MLHeat-inactivated at 57 °C for 30 minutes
HemacytometerSigma-AldrichZ359629Bright-Line Hemacytometer
HEPES BufferSigma-AldrichH0887
LysoTracker Deep RedLife TechnologiesL124921mM in DMSO; Absorption/Emission: 647/668 nm
Microcentrifuge tubesVWR87003-2941.7 mL
Phophate Buffered Saline (PBS)Gibco70011-044pH 7.4; 10X
Round-bottom tubesVWR3520635 mL Polypropylene Round-Bottom Tube
SyringeBD3096281 mL BD Luer-Lok Syringe sterile, singe use polycarbonate

References

  1. Bellwood, D. R., Hughes, T. P. Regional-scale assembly rules and biodiversity of coral reefs. Science. 292 (5521), 1532-1535 (2001).
  2. Ferrario, F., et al. The effectiveness of coral reefs for coastal hazard ris....

Explore More Articles

Flow CytometryFluorescence activated Cell SortingCoral Cell IsolationCell Population IdentificationCell StainingGating StrategyCell CollectionPurity CheckIn Vitro Studies

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved