Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We present a murine model of brain death induction in order to evaluate the influence of its pathophysiological effects on organs as well as on consecutive grafts in the context of solid organ transplantation.

Abstract

While both living donation and donation after circulatory death provide alternative opportunities for organ transplantation, donation after donor brain death (BD) still represents the major source for solid transplants. Unfortunately, the irreversible loss of brain function is known to induce multiple pathophysiological changes, including hemodynamic as well as hormonal modifications, finally leading to a systemic inflammatory response. Models that allow a systematic investigation of these effects in vivo are scarce. We present a murine model of BD induction, which could aid investigations into the devastating effects of BD on allograft quality. After implementing intra-arterial blood pressure measurement via the common carotid artery and reliable ventilation via a tracheostomy, BD is induced by steadily increasing intracranial pressure using a balloon catheter. Four hours after BD induction, organs may be harvested for analysis or for further transplantation procedures. Our strategy enables the comprehensive analysis of donor BD in a murine model, therefore allowing an in-depth understanding of BD-related effects in solid organ transplantation and potentially paving the way to optimized organ preconditioning.

Introduction

Transplantation is currently the only curative treatment for end-stage organ failure. Until now, brain death (BD) patients have been the main source for organ donations, although living donation and donation after circulatory death are valuable alternatives1. BD is defined by an irreversible coma (with a known cause), the absence of brain stem reflexes and apnea2. Unfortunately, BD organs demonstrate inferior results in long-term graft survival independent of human leukocyte antigen (HLA)-mismatch and cold ischemic time3. Meanwhile, intensive research on this antigen-independent risk factor has be....

Protocol

Animal experiments were performed in compliance with the Principles of Laboratory Animal Care formulated by the National Society for Medical Research and the Guide for the Care and Use of Laboratory Animals prepared by the National Academy of Science and published by the National Institutes of Health (NIH Publication No. 86-23, revised 1985). All experiments were approved by the Austrian Ministry of Education, Science and Culture (BMWF-66.011/0071-II/3b/2012).

1. Arterial catheterization

Representative Results

The murine BD model was successfully performed more than 100 times with a success rate of over 90%. Additionally, post interventional organ transplantation of heart and kidney has been safely performed7.

BD induces a variety of pathophysiological changes that may be further investigated using this model. As shown in Figure 1, the blood pressure shows an initial hypertensive p.......

Discussion

BD, a risk factor for allograft quality in multi-organ donors, entails a plethora of pathophysiological changes, which can only be sufficiently assessed using in vivo models. Hemodynamic changes, cytokine storm, hormonal changes and their ultimate impact on organ graft quality and survival cannot be analyzed in vitro4. The majority of basic transplantation as well as immunological research is dependent on sophisticated diagnostic tools, which are widely available only in mice models. Mice models h.......

Acknowledgements

n.a.

....

Materials

NameCompanyCatalog NumberComments
Arterial catheter (BD Neoflon 26G)BD391349
Blood Pressure Transducers (APT300)Harvard Apparatus Inc.73-3862
Fogarty Arterial Embolectomy Catheter N° 3Edwards Lifesciences Corporation120403F
ForcepsFST11271-30
Homeothermic Blanket Systems with Flexible ProbeHarvard Apparatus Inc.55-7020
KetansolGraeub6680110
Micro scissorFST15018-10
Needle holderFST12060-02
Prolene 5-0Ethicon8698H
Pump 11 Elite Infusion Only SingleHarvard Apparatus Inc.70-4500
ScissorFST14075-11
Stereotactic microscopeOlympusSZX7
Transpore Tape3M1527-1
UnderpadsMolinea.A274301
Ventilator for mice (MiniVent Model 845)Harvard Apparatus Inc.73-0043
XylasolGraeub7630109

References

  1. Hart, A., et al. OPTN/SRTR 2017 Annual Data Report: Kidney. American Journal of Transplantation. 19 (Suppl 2), 19 (2019).
  2. The Quality Standards Subcommittee of the American Academy of Neurology. Practice parameters for determining br....

Explore More Articles

Brain DeathIntra arterial Blood PressureVentilationTracheostomyMouse ModelOrgan TransplantationInflammatory ResponseArterial CatheterizationCommon Carotid ArteryTracheal IntubationBrain InjuryBalloon Catheter

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved