A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We present a protocol of using a smartphone app to perform Hirschberg test for measuring manifest and intermittent ocular misalignment (strabismus) under near and far fixation conditions.
A smartphone app has been developed to perform the automated photographic Hirschberg test for objective measurement of ocular misalignment. By computing the difference in corneal reflection generated by the phone camera flash relative to the iris center based on high resolution images, the app can measure misalignment with a much higher precision than the naked eye performing the Hirschberg test. It has been validated in a previous clinical evaluation study by comparing to the clinical gold standard-prism and alternate cover test. The goal of this article is to describe the testing techniques regarding how to use the app to measure ocular alignment for different fixation distances, without or with cover to break fusion, as well as angle kappa, so that users can use the app to perform equivalent tests typically done in clinic using prisms.
Measurement of eye alignment is frequently performed in vision care clinics. Cover test with prism neutralization is the commonly used clinical method for quantifying the degree of eye misalignment (strabismus). This method requires a high degree of training and experience. Accurate measurement becomes more challenging when patients cannot fully engage in the exam such as young children1, individuals with brain injuries or stroke2, or developmental disabilities3. Furthermore, there is a need for ocular alignment testing in school screening, because strabismus develops during childhood in an estimated 5−8% of the US population4, and is a substantial risk factor for amblyopia with about 30−40% of cases of amblyopia attributed to strabismus5,6,7. However, school nurses are normally not trained to conduct the standard cover test with prism neutralization for such screening. For non-eye care professionals, an additional challenge in strabismus screening is that intermittent strabismus (misalignment is not always manifested) and smaller magnitudes of misalignment are not visually obvious (<15 prism diopters [Δ])8.
In an attempt to address the challenges in the detection and measurement of strabismus, we have developed a smartphone app (EyeTurn) that implements and automates the photographic Hirschberg method9 by comparing the displacement of corneal reflections between the eyes. While conventional photographic Hirschberg method has been shown to have good reproducibility in clinics10,11, the cost for dedicated, standalone devices is a barrier for wide adoption. By providing an easy-to-use tool to measure eye alignment with standard smartphones, we hypothesize it will be widely adopted in school vision screening and used by non-eye care professionals. Our previous evaluation studies have shown that the app measurement is consistent with the current clinical standard of prism and alternate cover test12, for strabismus magnitudes of esotropia and exotropia up to 60Δ. In a pilot school screening study, we also showed that the app can help the school nurse detect children with intermittent exotropia who were missed by standard school vision screening protocols13.
The iOS version of the app is currently available to researchers and clinicians upon request for research purposes. The requesters have thus far included school nurses, pediatric ophthalmologists, optometrists, neuro-ophthalmologists, and strabismus specialists. The purpose of this article is to share the detailed app protocols for using the app to evaluate ocular alignment under different viewing conditions, namely, near and far fixation distance; with and without eye covering to break binocular fusion.
This study was conducted in accordance with the tenets of the Declaration of Helsinki, at Schepens Eye Research Institute (Boston, MA) and Spaulding Rehabilitation Hospital (Boston, MA). Informed consent was obtained from all the participants. The study was approved by the local institutional review boards of Mass Eye and Ear (Boston, MA).
NOTE: Patient inclusion criteria were prior diagnosis of horizontal strabismus (constant or intermittent exotropia or esotropia) and no other visual impairments. This study was a part of a larger one reported previously12. Data for 14 patients recruited in the US in the larger study12 are reported here with permission. An optometrist specialized in vision rehabilitation who routinely evaluate strabismus in clinic performed prism and alternate cover test, following by measurement with the app to prevent bias of the cover test results by the objective app measurement.
1. Prepare the test
NOTE: Testing can be performed in any environment; however, the following controls are likely to aid in successful testing.
2. Measure tropia (manifest strabismus) with single snapshot−near fixation
3. Measure tropia (manifest strabismus) with snapshot−far fixation
NOTE: To measure tropia for far fixation, the angle kappa for each eye needs to be measured at least once. The app will automatically choose the latest measurement of angle kappa in the history. If it is not available for either eye, the app will give a reminder to first obtain this measurement (see section 6 for details of angle kappa measurement).
4. Measure intermittent strabismus or phoria with cover test−near fixation
5. Measure intermittent strabismus or phoria with cover test−far fixation
NOTE: To measure intermittent ocular misalignment for far fixation, the angle kappa for each eye needs to be measured at least once. The app will automatically choose the latest angle kappa measure. If it is not available for either eye, the app will give a reminder to first obtain this measurement (see section 6 for details of angle kappa measurement).
6. Measure angle kappa
In this work, we describe the protocols to evaluate ocular alignment using a smartphone app that performs the photographic Hirschberg test. The interface of the app is shown in Figure 1. The users can choose to perform cover test or measure a patient with both eyes fixating at a target simultaneously, either at near or far fixation distances. Once the viewing conditions are determined depending on the test purposes, the users can follow the protocols and take...
A person without professional training can use the EyeTurn app to capture pictures of the eyes and obtain ocular alignment measurements, which might be interpreted by an eye care specialist onsite or remotely. The app only provides magnitude of the misalignment, rather than any interpretation or diagnosis. Eye care professionals such as optometrists or ophthalmologists should determine if the misalignment is significant or not, and make a diagnosis after considering other factors including the conditions under which the ...
All authors have a pending patent application on a method of measuring strabismus using a smartphone camera. The technology is being commercialized by EyeNexo LLC, which was founded by authors GL, PS, MT and KH, under a license from Mass Eye and Ear.
This work was supported in part by NIH grant R44EY025902 and by the Mass Eye & Ear Curing Kids Grant.
Name | Company | Catalog Number | Comments |
EyeTurn | EyeNexo | Smartphone app for measureing eye misalignment |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved