A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Presented here is a multiphoton microscopic platform for live mouse ocular surface imaging. Fluorescent transgenic mouse enables the visualization of cell nuclei, cell membranes, nerve fibers and capillaries within the ocular surface. Non-linear second harmonic generation signals derived from collagenous structures provide label-free imaging for stromal architectures.
Conventional histological analysis and cell culture systems are insufficient to simulate in vivo physiological and pathological dynamics completely. Multiphoton microscopy (MPM) has become one of the most popular imaging modalities for biomedical study at cellular levels in vivo, advantages include high resolution, deep tissue penetration and minimal phototoxicity. We have designed an MPM imaging platform with a customized mouse eye holder and a stereotaxic stage for imaging ocular surface in vivo. Dual fluorescent protein reporter mouse enables visualization of cell nuclei, cell membranes, nerve fibers, and capillaries within the ocular surface. In addition to multiphoton fluorescence signals, acquiring second harmonic generation (SHG) simultaneously allows for the characterization of collagenous stromal architecture. This platform can be employed for intravital imaging with accurate positioning across the entire ocular surface, including cornea and conjunctiva.
The ocular surface structures, including the cornea and conjunctiva, protect other deeper ocular tissues from external disturbances. The cornea, the transparent front part of the eye, functions both as a refractive lens for directing light into the eye and as a protective barrier. Corneal epithelium is the outermost layer of the cornea and consists of distinct layers of superficial cells, wing cells and basal cells. Corneal stroma is composed of sophisticatedly packed collagenous lamellae embedded with keratocytes. Corneal endothelium, a single layer of flat hexagonal cells, has an important role in maintaining the transparency of cornea by keeping corneal stroma in a....
All animal experiments were conducted in accordance with procedures approved by the Institutional Animal Care and Use Committee (IACUC) of the National Taiwan University and Chang Gung Memorial Hospital.
1. Multiphoton microscopy setup
Using this live imaging platform, the mouse ocular surface can be visualized at cellular levels. To visualize individual single cells in the ocular surface, we employed the dual fluorescent transgenic mice with EGFP expressed in the nucleus and tdTomato expressed in the cell membrane. The collagen-rich corneal stroma was highlighted by SHG signals.
In corneal epithelium, superficial cells, wing cells and basal cells (Figure 2) were visualized. In the dual fluoresc.......
This custom-built MPM imaging platform with a control software was used for intravital imaging of mouse epithelial organs, including skin10, hair follicle10 and ocular surface9,10 (Figure 1A). The custom-built system was used for its flexibility in changing the optical components for various experiments, since the beginning of our project. This imaging methodology is versatile for comme.......
We thank the grant support from Ministry of Science and Technology, Taiwan (106-2627-M-002-034, 107-2314-B-182A-089, 108-2628-B-002-023, 108-2628-B-002-023), National Taiwan University Hospital (NTUH108-T17) and Chang Gung Memorial Hospital, Taiwan (CMRPG3G1621, CMRPG3G1622, CMRPG3G1623).
....Name | Company | Catalog Number | Comments |
AVIZO Lite software | Thermo Fisher Scientific | Version: 2019.3.0 | |
Bandpass filters | Semrock | FF01-434/17 FF01-500/24 FF01-585/40 | |
Dichroic mirrors | Semrock | FF495-Di01-25x36 FF580-Di01-25x36 | |
Galvano | Thorlabs | GVS002 | |
Jade BIO control software | SouthPort Corporation | Jade BIO | |
Oxybuprocaine hydrochloride | Sigma | O0270000 | |
PMT | Hamamatsu | H7422A-40 | |
Polyesthylene Tube | BECTON DICKINSON | 427401 | |
Stereotaxic mouse holder | Step Technology Co.,Ltd | 000111 | |
Ti: Sapphire laser | Spectra-Physics | Mai-Tai DeepSee | |
Upright microscopy | Olympus | BX51WI | |
Vidisic Gel | Dr. Gerhard Mann Chem-pharm. Fabrik GmbH | D13581 | |
Zoletil | Virbac | VR-2831 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved