Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Presented here is a protocol for analyzing nanostructural changes during in situ biasing with transmission electron microscopy (TEM) for a stacked metal-insulator-metal structure. It has significant applications in resistive switching crossbars for the next generation of programmable logic circuits and neuromimicking hardware, to reveal their underlying operation mechanisms and practical applicability.

Abstract

Resistive switching crossbar architecture is highly desired in the field of digital memories due to low cost and high-density benefits. Different materials show variability in resistive switching properties due to the intrinsic nature of the material used, leading to discrepancies in the field because of underlying operation mechanisms. This highlights a need for a reliable technique to understand mechanisms using nanostructural observations. This protocol explains a detailed process and methodology of in situ nanostructural analysis as a result of electrical biasing using transmission electron microscopy (TEM). It provides visual and reliable evidence of underlying nanostructural changes in real time memory operations. Also included is the methodology of fabrication and electrical characterizations for asymmetric crossbar structures incorporating amorphous vanadium oxide. The protocol explained here for vanadium oxide films can be easily extended to any other materials in a metal-dielectric-metal sandwiched structure. Resistive switching crossbars are predicted to serve the programmable logic and neuromorphic circuits for next-generation memory devices, given the understanding of the operation mechanisms. This protocol reveals the switching mechanism in a reliable, timely, and cost-effective way in any type of resistive switching materials, and thereby predicts the device's applicability.

Introduction

Resistance change oxide memories are increasingly used as the building block for novel memory and logic architectures due to their compatible switching speed, smaller cell structure, and the ability to be designed in high capacity three-dimensional (3D) crossbar arrays1. To date, multiple switching types have been reported for resistive switching devices2,3. Common switching behaviors for metal oxides are unipolar, bipolar, complementary resistive switching, and volatile threshold switching. Adding on to the complexity, single cell has been reported to show multifunctional resistive swi....

Protocol

1. Fabrication process and electrical characterization

  1. Use standard image reversal photolithography9 to pattern bottom electrode (BE layer 1) with photoresist of the devices using the following parameters:
    1. Spin coat the photoresist at 3,000 rpm, soft bake it at 90 °C for 60 s, expose with 25 mJ/cm2 with a 405 nm laser, bake at 120 °C for 120 s, perform flood exposure with 21 mW/cm2 and a 400 nm laser, develo.......

Representative Results

The results achieved using this protocol for the a-VOx cross-point devices are explained in Figure 8. Figure 8A shows the TEM micrograph of the intact lamella. Here the diffraction patterns (inset) indicate the amorphous nature of the oxide film. For the in situ TEM measurements, controlled voltages were applied starting from 25 mV to 8 V in 20 mV steps with the bottom electrode (BE) positively biased and top.......

Discussion

This paper explains the protocol for in situ biasing with transmission electron microscopy including the fabrication process for the device, gridbar designing for biasing chip mounting, lamella preparation and mounting on the biasing chip, and TEM with in situ biasing.

The fabrication methodology of cross-point devices, which can be easily scaled up to crossbar structures, is explained. The Ti capping of vanadium oxide is essential to incorporate amorphous vanadium oxide, because it .......

Acknowledgements

This work was performed in part at the Micro Nano Research Facility at RMIT University in the Victorian Node of the Australian National Fabrication Facility (ANFF). The authors acknowledge the facilities, and the scientific and technical assistance of the RMIT University's Microscopy, Microanalysis Facility, a linked laboratory of the Microscopy Australia. Scholarship support from the Australian Postgraduate Award (APA)/Research Training Program (RTP) scheme of the Australian government is acknowledged. We thank Professor Madhu Bhaskaran, Associate Professor Sumeet Walia, Dr. Matthew Field, and Mr. Brenton Cook for their guidance and helpful discussions.

....

Materials

NameCompanyCatalog NumberComments
Resist processing systemEV groupEVG 101
AcetoneChem-SupplyAA008
Biasing Chip - E-chipProtochipsE-FEF01-A4
DeveloperMMRCAZ 400K
Electron beam evaporator - PVD 75Kurt J LeskarPRO Line - eKLipse
Focused Ion beam systemThermo Fisher - FEIScios DualBeamTM system
Hot platesBrewer Science Inc.1300X
Magnetron SputtererKurt J LeskarPRO Line
Mask alignerKarl SussMA6
Maskless AlignerHeildberg instrumentsMLA150
MethanolFisher scientificM/4056
PhototresistMMRCAZ 5412E
Pt source for e-beam evaporatorUnicore
The Fusion E-chip holderProtochipsFusion 350
Ti source for e-beam evaporatorUnicore
Transmission Electron MicroscopeJEOLJEM 2100F

References

  1. Kozma, R., Pino, R. E., Pazienza, G. E., Kozma, R., Pino, R. E., Pazienza, G. E. . Advances in Neuromorphic Memristor Science and Applications. , 9-14 (2012).
  2. Pan, F., Gao, S., Chen, C., Song, C., Zeng, F. Recent progress in resistive random access memories....

Explore More Articles

In situ Transmission Electron MicroscopyBiasingCrossbar DevicesAmorphous Vanadium OxideNano structural ChangesMetal insulator metal DevicePhotolithographyPhysical Vapor DepositionLift offBiasing ChipGridbar

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved