A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The article describes quantification of 1) the size and number of focal adhesions and 2) cell shape index and its distribution from confocal images of the confluent monolayers of MCF7 cells.
The methods presented here quantify some parameters of confluent adherent cell monolayers from multiple appropriately stained confocal images: adhesion to the substrate as a function of the number and size of focal adhesions, and cell shape, characterized by the cell shape index and other shape descriptors. Focal adhesions were visualized by paxillin staining and cell-cell borders were marked by junction plakoglobin and actin. The methods for cell culture and staining were standard; images represent single focal planes; image analysis was performed using publicly available image processing software. The presented protocols are used to quantify the number and size of focal adhesions and the differences in cell shape distribution in the monolayers, but they can be repurposed for the quantification of the size and shape of any other distinct cellular structure that can be stained (e.g., mitochondria or nuclei). Assessing these parameters is important in the characterization of the dynamic forces in adherent cell layer, including cell adhesion and actomyosin contractility that affects cell shape.
Epithelial cell monolayers act as a collective in which cell-cell and cell-substrate adhesion as well as contractile forces and tensions represent important parameters and their proper balance contributes to the overall integrity of the unit1,2,3. Thus, assessing these parameters represents a way to establish the current status of the cell layer.
The two methods described here represent a two-dimensional analysis of the confluent monolayers of adherent, epithelial cells (in this case MCF7 breast cancer cell line). The analysis is performed using confocal images (single Z-slices) from different regions on the Z-axis; basal region near a substrate for focal adhesion (FA) measurements and apical region for cell shape measurements. The presented methods are relatively simple and require standard laboratory techniques and open-source software. Confocal microscopy is sufficient for this protocol, so it can be performed without employing more specialized TIRF (Total Internal Reflection Fluorescence) microscopy. Thus, the protocol could be implemented in a relatively standard laboratory setting. Although the accuracy of the methods is limited, they can distinguish basic differences in focal adhesion and cell shape.
Both methods described here consist of the standard experimental procedures such as cell culturing, immunostaining, confocal imaging and image analysis performed using ImageJ. However, any image processing software with the appropriate functions can be used. The presented methods can track and compare changes inflicted by pharmacological treatment or minimal genetic modification. Obtaining definite values is not recommended, due to the limited precision of these methods. Two automated macros were included, to facilitate the measurements of many images.
1. Preparatory steps
2. Image analysis
NOTE: Provided macros work optimally on ImageJ version 1.50f or newer. Use for quantification only of images with a high signal-to-noise ratio and without under- or oversaturated pixels. The described methods include steps requiring manual parameter adjustment. Thus, a blind analysis/blinded experiment setup is recommended. For encrypting image file names, ImageJ plugins such as “Blind Analysis Tool” (available at: https://imagej.net/Blind_Analysis_Tools) can be used.
3. Quantification
Focal adhesion analysis
The knockdown of HAX1 gene was previously shown to affect focal adhesions6. Cells were cultured on collagen I-coated surface for 48 h. Images of the MCF7 control cells and MCF7 cells with a HAX1 knockdown (HAX1 KD) from three independent experiments stained with focal adhesion protein paxillin were obtained using a confocal microscope (image from single focal plane/Z-slice from basal region). FAs from about 2,000-2,500 cells...
Cell-cell and cell-substrate adhesion constitute inherent attributes of the epithelial cells and play the critical role in tissue morphogenesis and embriogenesis. In adult tissues the proper regulation of mechanical properties of the cell layer is crucial in maintaining homeostasis and preventing pathological responses like tumor progression and metastasis. The size and number of focal adhesions depend on the strength of cell-substrate adhesion, while cell shape depends on contractile forces and is related to the status ...
The authors have nothing to disclose.
This work was supported by the Polish National Science Center under grant no. 2014/14/M/NZ1/00437.
Name | Company | Catalog Number | Comments |
Alexa Fluor 594 | ThermoFisher Scientific | A32740 | goat anti-rabbit, 1:500 |
Ammonium chloride | Sigma | A9434 | |
BSA | BioShop | ALB001.500 | |
Collagen from calf skin | Sigma | C9791-10MG | |
DAPI | Sigma | D9542 | 1:10000 (stock 1 mg/mL in H2O), nucleic acid staining |
DMEM + GlutaMAX, 1 g/L D-Glucose, Pyruvate | ThermoFisher Scientific | 21885-025 | |
FBS | ThermoFisher Scientific | 10270-136 | |
Junction plakoglobin | Cell Signaling | 2309S | rabbit, 1:400 |
Laminar-flow cabinet class 2 | Alpina | standard equipment | |
MCF7-basedHAX1KD cell line | Cell line established in the National Institute of Oncology, Warsaw, described in Balcerak et al., 2019 | MCF7 cell line withHAX1knockdown | |
MCF7 cell line (CONTROL) | ATCC | ATCC HTB-22 | epithelial, adherent breast cancer cell line |
Olympus CK2 light microscope | Olympus | ||
Paxillin | Abcam | ab32084 | rabbit, 1:250, Y113 |
PBS | ThermoFisher Scientific | 10010023 | |
Phalloidin-TRITC conjugate | Sigma | P1951 | 1:400 (stock 5 mg/mL in DMSO), actin labeling |
PTX | Sigma | T7402-1MG | |
TBST – NaCl | Sigma | S9888 | |
TBST – Trizma base | Sigma | T1503 | |
Triton X-100 | Sigma | 9002-93-11 | |
Zeiss LSM800 Confocal microscope | Zeiss |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved