A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We present a high-throughput, in vitro method for quantifying regional pulmonary deposition at the lobe level using CT scan-derived, 3D printed lung models with tunable air flow profiles.
Development of targeted therapies for pulmonary diseases is limited by the availability of preclinical testing methods with the ability to predict regional aerosol delivery. Leveraging 3D printing to generate patient-specific lung models, we outline the design of a high-throughput, in vitro experimental setup for quantifying lobular pulmonary deposition. This system is made with a combination of commercially available and 3D printed components and allows the flow rate through each lobe of the lung to be independently controlled. Delivery of fluorescent aerosols to each lobe is measured using fluorescence microscopy. This protocol has the potential to promote the growth of personalized medicine for respiratory diseases through its ability to model a wide range of patient demographics and disease states. Both the geometry of the 3D printed lung model and the air flow profile setting can be easily modulated to reflect clinical data for patients with varying age, race, and gender. Clinically relevant drug delivery devices, such as the endotracheal tube shown here, can be incorporated into the testing setup to more accurately predict a device’s capacity to target therapeutic delivery to a diseased region of the lung. The versatility of this experimental setup allows it to be customized to reflect a multitude of inhalation conditions, enhancing the rigor of preclinical therapeutic testing.
Many pulmonary diseases such as lung cancer and chronic obstructive pulmonary disease (COPD) exhibit regional differences in disease characteristics; however, there are a lack of therapeutic techniques available to target drug delivery to only diseased regions of the lung1. Multiple computational fluid dynamic (CFD) models have demonstrated that it is possible to modulate drug deposition profiles by identifying specific streamlines in the lung2,3. Development of both inhalers and endotracheal (ET) tube adaptors with regional targeting capabilities are on-going in our lab to control aerosol distribution to diseased lung regions. Extension of these principles to clinical use is limited by current preclinical testing capacity. The precise location a drug deposits within the lung is known to be the best predictor of efficacy; however, current pharmaceutical assessments of inhalable therapeutics are most often predicted using in vitro-in vivo correlations of particle size to merely approximate deposition4. This technique does not allow for any spatial analysis to determine the effects of different airway geometries on regional distribution through the various lobes of the lung. Additionally, this testing lacks anatomically accurate lung geometries, which researchers have shown can have a significant impact on deposition profiles5. Some efforts have been made to incorporate patient-specific lung geometries into testing protocols through the addition of the upper airways; however, most of these approaches sample aerosol delivery to various generations of the lung rather than each lung lobe6,7,8. The following protocol presents a high-throughput method of generating patient-specific lung models with the capacity to quantify relative particle deposition in each of the five lobes of the lung9.
Anatomically accurate model lungs are generated by 3D printing patient computed tomography (CT) scans. When used in conjunction with an easily assembled flow system, the relative flow rates through each of the model lung’s lobes can be independently controlled and tailored to mimic those of different patient demographics and/or disease states. With this method, researchers can test the efficacy of potential therapeutic methods in a relevant lung geometry and correlate each method’s performance with the progression of diseased morphology. Here, two device designs developed in our lab are tested for their ability to increase deposition in a desired lung lobe by controlling the location of aerosol release in the mouth or trachea. This protocol also has the potential to significantly impact the development of personalized procedures for patients by facilitating the rapid prediction of treatment efficacy in a model lung specific to that patient’s CT scan data.
1. Preparation of 3D printed experimental components
NOTE: All software used in the protocol are indicated in the Table of Materials. Additionally, the slicing software utilized is specific to the 3D printer listed in the Table of Materials; however, this protocol can be extended to a wide range of stereolithography (SLA) 3D printers.
2. Assembly of tubing system for flow rate control
3. Assembly of lobe outlet caps with patient lung model
NOTE: This portion of the protocol must be completed prior to every experimental run.
4. Generation of clinically relevant air flow profile
NOTE: This portion of the protocol must be completed prior to every experimental run.
5. Delivery of aerosol to the lung model
NOTE: Experiments must be performed in a fume hood with the sash closed to minimize exposure to any aerosols generated by the nebulizer.
6. Outlet filter paper imaging
7. Quantification of particle deposition
Particles in this size range (1-5 μm) and flow conditions (1-10 L/min) follow the fluid stream lines based on both their theoretical Stokes number and in vivo data; therefore, in the absence of a targeted delivery device, particles released into the lung model are expected to deposit according to the percentage of total airflow diverted to each lobe. The relative amounts of particle delivery to each lobe can then be compared to clinical lobe flow rate data obtained through analyzing patient-specific high-resolution ...
The current state-of-the-art device for pulmonary pharmaceutical testing of a complete inhalation dose is the Next Generator Impactor (NGI), which measures the aerodynamic diameter of an aerosol4. This sizing data is then used to predict the lung generation at which the aerosol will deposit based on a correlation developed for a healthy adult male11. Unfortunately, this method is limited in its ability to assess differences in regional lung deposition, determine the effects...
The authors have nothing to disclose.
The authors thank Professor Yu Feng, Dr. Jenna Briddell, Ian Woodward, and Lucas Attia for their helpful discussions.
Name | Company | Catalog Number | Comments |
1/4" Plastic Barbed Tube Fitting | McMaster Carr | 5372K111 | |
10 um Filter Paper | Fisher | 1093-110 | |
1um Fluorescent Polystyrene Particles | Polysciences | 15702-10 | |
1um Non-Fluorescent Polystyrene Particles | Polysciences | 8226 | |
2-Propanol | Fisher | A516-4 | Referred to in protocol as "IPA" |
3/8" Plastic Barbed Tube Fitting | McMaster Carr | 5372K117 | |
Air Flow Meter (1 - 280 mL/min) | McMaster Carr | 41695K32 | Referred to in protocol as "flow meter" |
Carbon M1 3D Printer | Carbon 3D | https://www.carbon3d.com/, Associated software referred to in protocol as "slicing software" | |
Collison Jet Nebulizer | CH Technologies | ARGCNB0008 (CN-25) | 6 Jet MRE style horizontal collision with glass jar, Referred to in protocol as "nebulizer", http://chtechusa.com/Manuals/MRE_Collison_Manual.pdf |
Convection Oven | Yamato | DKN602 | |
Copley Critical Flow Controller TPK2000 Reve 120V | MSP Corp | 0001-01-9810 | Referred to in protocol as "flow controller" |
Copley High Capacity Pump Model HCP5 | MSP Corp | 0001-01-9982 | Referred to in protocol as "vacuum pump" |
Cytation | BioTek | CYT5MPV | Multifunctional Spectrophotometer/Fluorescent imager equiped with 4x/20x/40x objectives and DAPI/GFP/TexasRed laser/filter cubes |
EPU40 Resin | Carbon 3D | https://www.carbon3d.com/materials/epu-elastomeric-polyurethane/, Referred to in protocol as "soft resin" | |
Filter for vacuum pump | Whatman | 6722-5000 | |
Flow Meter Model DFM 2000 | MSP Corp | 0001-01-8764 | Referred to in protocol as "electronic flow meter" |
ImageJ Software | ImageJ | https://imagej.nih.gov/ij/download.html | |
Inline Air Flow Control Valve (Push-to-Connect) | McMaster Carr | 62005K333 | Referred to in protocol as "valve" |
Inline Filter Devices | Whatman | WHA67225000 | |
Marine-Grade Plywood Sheet | McMaster Carr | 62005K333 | Referred to in protocol as "wooden board" |
Materialise Mimics Software | Materialise | https://www.materialise.com/en/medical/mimics-innovation-suite, Referred to in protocol as "CT scan software" | |
Meshmixer Software | Autodesk | http://www.meshmixer.com/, Referred to in protocol as "mesh editing software" | |
Methanol | Fisher | A454-4 | |
Opticure LED Cube | APM Technica | 102843 | Referred to in protocol as "UV oven" |
PR25 Resin | Carbon 3D | https://www.carbon3d.com/materials/uma-urethanemethacrylate, /Referred to in protocol as "hard resin" | |
PVC Tube for Chemicals | McMaster Carr | 5231K161 | 1/4" ID |
Screws | |||
SolidWorks Software | Dassault Systèmes SolidWorks Corporation | https://www.solidworks.com/, Referred to in protocol as "3D modeling software" | |
Straight Flow Rectangular Manifold | McMaster Carr | 1125T31 | |
Tubing to Flow Controller | McMaster Carr | 5233K65 | 3/8" ID |
Wire |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved