A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
We present a protocol to measure regional oxygen saturation (rSO2) in hemodialysis (HD) patients by using a near-infrared spectroscopy monitor. The rSO2 value is an index of tissue oxygenation. This noninvasive and real-time monitoring could be useful for confirming changes in organ oxygenation during HD.
Near-infrared spectroscopy (NIRS) has recently been applied as a tool to measure regional oxygen saturation (rSO2), a marker of tissue oxygenation, in clinical settings including cardiovascular and brain surgery, neonatal monitoring and prehospital medicine. The NIRS monitoring devices are real-time and noninvasive, and have mainly been used for evaluating cerebral oxygenation in critically ill patients during an operation or intensive care. Thus far, the use of NIRS monitoring in patients with chronic kidney disease (CKD) including hemodialysis (HD) has been limited; therefore, we investigated rSO2 values in some organs during HD. We monitored rSO2 values using a NIRS device transmitting near-infrared light at 2 wavelengths of attachment. The HD patients were placed in a supine position, with rSO2 measurement sensors attached to the foreheads, the right hypochondrium and the lower legs to evaluate rSO2 in the brain, liver and lower leg muscles, respectively. NIRS monitoring could be a new approach to clarify changes in organ oxygenation during HD or factors affecting tissue oxygenation in CKD patients. This article describes a protocol to measure tissue oxygenation represented by rSO2 as applied in HD patients.
Near-infrared spectroscopy (NIRS) has been used to evaluate regional oxygen saturation (rSO2), a marker of tissue oxygenation, especially cerebral oxygenation in various clinical settings1,2,3 and has recently been applied to patients undergoing hemodialysis (HD)4,5,6,7,8,9,10,11. Cerebral rSO2 is reportedly associated with cognitive function in patients undergoing HD or those with non-dialyzed chronic kidney disease (CKD)11,12. However, thus far, the use of NIRS monitoring has been limited in patients with CKD.
As NIRS monitoring is real-time and noninvasive, we assessed its usefulness as a monitoring device in patients undergoing HD. Although NIRS is mainly used to measure cerebral rSO2, we also investigated rSO2 values in other organs during HD. Specifically, the rSO2 measurement sensors were attached to the forehead, the right hypochondrium and the lower legs to evaluate rSO2 in the brain, liver and lower muscles, respectively. The results showed that NIRS monitoring could be a new approach to clarify changes in organ oxygenation during HD or factors affecting tissue oxygenation in CKD patients.
To date, continuous monitoring was performed during HD, blood volume monitoring, central venous oxygen saturation, thoracic admittance and electronic stethoscope-guided estimated blood pressure (BP) in clinical settings13,14,15; however, there are limitations for the prediction of hypotension or the wide use of devices. In contrast, the new noninvasive approach here could provide real-time information on intradialytic oxygen dynamics in individual organs. Therefore, this monitoring method may allow the detection of transient organ ischemia in the early phases of intradialytic hypotension and may also permit the safe performance of HD. This article describes a protocol to measure tissue oxygenation represented by rSO2, as applied in patients undergoing HD.
All participants provided written informed consent. The study was approved by the Institutional Review Board of the Saitama Medical Center, Jichi Medical University, Japan (RIN 15–104).
1. Device for the monitoring of rSO2
2. Attaching the measurement sensor
3. Puncturing the dialysis shunt and starting monitoring
Cerebral rSO2 values before HD were lower than those in healthy subjects and cerebral rSO2 in HD patients with diabetes mellitus (DM) were lower than those in HD patients without DM (Figure 1)16. Furthermore, although tissue oxygenation continues without a decrease of BP during HD, we incidentally observed changes in cerebral and hepatic rSO2 due to intradialytic hypotension (Figure 2). Due to the continuo...
NIRS monitoring has been mainly used to evaluate cerebral rSO2, especially in cardiovascular or cerebrovascular surgeries, which require extracorporeal circulation. During extracorporeal circulation including HD therapy, some organs could show relative ischemia7,17,18; however, it remains unclear whether tissue oxygenation becomes low or not. Muscle cramps or abdominal pain during HD could be one of the prodromal symp...
No conflicts of interest.
We thank the dialysis staffs and members of the department of nephrology in Saitama medical center of Jichi Medical University. We would like to thank Editage (www.editage.com) for English language editing.
Name | Company | Catalog Number | Comments |
DBB-100NX | Nikkiso | DBB-100NX | Dialysis machine |
INVOS 5100c | Covidien Japan | INVOSTM 5100c | tissue oxygenation device |
SOMASENSER | Covidien Japan | CV-SAFB-SM/INTL | NIRS sensor |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved