Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Представляем протокол поведенческого анализа взрослых (в возрасте от 18 до 70 лет), занятых в учебных процессах, выполнения задач, предназначенных для саморегулируемого обучения (SRL). Участники, преподаватели университетов и студенты, а также взрослые из Университета опыта, были проверены с помощью устройств слежения за глазами, и данные были проанализированы с помощью методов сбора данных.
Поведенческий анализ взрослых, занимающихся учебными задачами, является серьезной проблемой в области образования взрослых. В настоящее время в мире непрерывных технологических изменений и научных достижений существует потребность в непрерывном обучении и образовании на протяжении всей жизни как в формальной, так и в неосуществимой образовательной среде. В ответ на эту проблему использование технологии отслеживания глаз и методов сбора данных, соответственно, для контролируемого (главным образом прогнозирования) и неконтролируемого (в частности, кластерного анализа) обучения, обеспечивает методы обнаружения форм обучения среди пользователей и/или классификации их стилей обучения. В этом исследовании предлагается протокол для изучения стилей обучения среди взрослых с и без предыдущих знаний в разном возрасте (от 18 до 69 лет) и в разных точках на протяжении всего учебного процесса (начало и конец). Методы статистического анализа различий означают, что между участниками могут быть обнаружены различия по типу учащегося и предыдущим знаниям задачи. Аналогичным образом, использование неконтролируемых методов кластеризации обучения прожигает свет на аналогичные формы обучения среди участников в различных группах. Все эти данные будут способствовать персонализированные предложения от учителя для представления каждой задачи в различных точках в цепочке обработки информации. Кроме того, учителю будет легче адаптировать учебные материалы к потребностям обучения каждого студента или группы студентов с аналогичными характеристиками.
Методология слежения за глазами, применяемая к поведенческому анализу в обучении
Методология слежения за глазами, среди других функциональных применений, применяется к изучению поведения человека, особенно во время решения задачи. Этот метод облегчает мониторинг и анализ во время выполнения учебных задач1. В частности, уровни внимания студентов в разных точках учебного процесса (начало, развитие и конец) по различным предметам (история, математика, наука и т.д.) могут быть изучены с использованием технологии слежения за глазами. Кроме того, если задача включает в себя использование видео с голосом, который направляет процесс обучения, саморегулируемое обучение (SRL) облегчается. Таким образом, внедрение технологии слежения за глазами в анализе задач, к которым SRL (которые включают использование видео) предлагается в качестве важного ресурса, чтобы понять,как обучение развивается 2,3,4. Эта комбинация также будет означать, что различия между учебными методами (с или без SRL и т.д.) могут быть проверены с различными типами студентов (с или без предварительного знания и т.д.) 5.В отличие от этого, представление многоканальной информации (одновременное представление как слуховой, так и визуальной информации, будь то устной, письменной или живописной) может облегчить как запись, так и анализ соответствующей и не соответствующей информации из вышеупомянутыхпеременных 6. Студенты с предварительными знаниями, подверженными мультимедийным каналам обучения, как представляется, учатся более эффективно, чем те, у кого практически нет предварительных знаний. Студенты с высоким уровнем предварительного знания предмета будут интегрировать текстовую и графическую информацию более эффективно7. Эта функциональность была замечена в изучении текстов8, которые включают изображения9. Технология слежения за глазами предлагает информацию о том, где сосредоточено внимание и как долго. Эти данные дают представление о развитии учебного процесса более точным способом, чем простое наблюдение за процессом разрешения во время выполнения задачи. Кроме того, анализ этих показателей облегчает изучение того, развивается ли у студента глубокое или поверхностное обучение. Кроме того, взаимосвязь между этими данными и результатами обучения облегчает проверку информации, полученной с помощьютехнологии слежения за глазами 4,10. В самом деле, этот метод вместе с SRL все чаще используются в высшемобразовании и в взрослых образования 11 учебных сред, как на регулируемых и на нерегулируемыхкурсов 12.
Технология слежения за глазами предлагает различные метрики: расстояние, скорость, ускорение, плотность, дисперсия, угловая скорость, переходы между областями интереса (AOI), последовательный порядок AOI, посещения в фиксациях, саккады, путь сканирования и параметры тепловой карты. Однако интерпретация этих данных является сложной и требует использования контролируемых (регрессия, деревья решений и т.д.) и неконтролируемых (методы кластерного кластера k-means и т.д.) 13,14 методов обработки данных. Эти метрики могут быть применены для мониторинга поведения одного и того же субъекта с течением времени или для сравнения между несколькими предметами и их производительность с той жезадачей 15, путем анализа разницы между участниками с предыдущими знаниями по сравнению с не предыдущиезнания 16. Недавниеисследования 11,17 показал, что начинающие ученики зациклиться дольше на стимулы (т.е., есть большая частота фиксации в то время как аналогичные модели сканирования пути регистрируются). Средняя продолжительность фиксации была больше для экспертов, чем для новичков. Эксперты представили свое внимание на средних точках информации (проксимальной и центральной), различия, которые также можно увидеть в точках визуализации в AOI на тепловых картах.
Интерпретация метрик в отслеживании глаз
Недавниеисследования 18 показали, что получение информации связано с числом глазных фиксаций на стимулах. Другим важным показателем является саккада, которая определяется как быстрое и внезапное движение фиксации с интервалом в 10 мс, 100 мс. Шарафи и др. (2015)18 обнаружили различия в количестве саккад, в зависимости от фазы кодирования информации студента. Другим актуальным параметром является сканирование-путь, метрика, которая отражает хронологический порядок шагов, которые участник выполняет для решения задачи обучения в AOI, определенной исследователем18. Аналогичным образом, технология слежения за глазами может быть использована для прогнозирования уровня понимания участника, который, как представляется, связан с числом фиксаций. Недавние исследования показали, что изменчивость поведения взгляда определяется свойствами изображения (позиция, интенсивность, цвет и ориентация), инструкциями по выполнению задачи и типом обработки информации (стиль обучения) участника. Эти различия обнаруживаются путем анализа взаимодействия студента с различными AOI19. Количественные20 (частотный анализ) и/или качественныеили динамические 21 (путь сканирования) методы могут быть использованы для анализа данных, собранных из различных метрик. Первые методы анализируются с помощью традиционных статистических методов (частотный анализ, средняя разница, разница в дисперсии и т.д.), а последние анализируются с помощью методов машинного обучения (евклидовые расстоянияс методами редактирования строк 21,22икластеризация 17). Применение этих методов облегчает кластеризацию, рассматривая различные характеристики предметов. Одно исследование17 показало, что чем больше эксперт студент, тем более эффективна пространственная и временная стратегия обработки информации, которая реализуется. С описательной таблицей параметров измерений, которые использовались в данном исследовании, можно ознакомиться ниже в таблице 1.
Таблица 1: Большинство репрезентативных параметров, которые могут быть получены с помощью метода слежения за глазами, адаптированного из Саиса, Сапараин, Мартикорена и Веласко (2019). 20 Лет Пожалуйста, нажмите здесь, чтобы загрузить эту таблицу.
Применение методологии слежения за глазами к изучению учебного процесса
Использование технологических достижений и методов анализа данных, описанныхвыше 5, добавит большей точности поведенческому анализу учащихся на различных этапах обработки информации (инициирование задач, обработка информации и решение задач). Все это облегчит индивидуальный поведенческий анализ, который, в свою очередь, позволит группировке студентов с аналогичными характеристиками24. Аналогичным образом, прогностический методы (деревья решений, регрессионные методы и т.д.) 25 могут быть применены к обучению, связанные как с количеством фиксаций, так и с результатами решения задач каждого студента. Эта функциональность является очень важным шагом вперед в знании о том, как каждый студент учится и для предложения персонализированных учебных программ в различных группах (люди с или без трудностейобучения 26). Таким образом, использование этой техники будет способствовать достижению персонализации и оптимизации обучения27. Обучение на всю жизнь должно пониматься как цикл непрерывного совершенствования, поскольку знания общества постоянно развиваются и развиваются. Эволюционная психология показывает, что навыки разрешения и эффективность обработки информации уменьшаются с возрастом. В частности, частота саккады, амплитуда и скорость движений глаз среди взрослых, как было установлено, уменьшаются с возрастом. Кроме того, в пожилом возрасте внимание сосредоточено на нижних областях визуальных сцен, что связано с дефицитом рабочей памяти14. Тем не менее, активация увеличивается в лобных и префронтальных областях в более старшем возрасте, что, как представляется, компенсирует эти дефициты в разрешении задач. Этот аспект включает в себя уровень предыдущих знаний и когнитивных стратегий компенсации, что субъект может применяться. Опытные участники учатся более эффективно, так как они управляют вниманием более эффективно, благодаря применению автоматизированных процессов надзора28. Кроме того, если информация, которая будет изучена, передается с помощью методов SRL, вышеупомянутые недостаткисмягчаются 17. Использование таких методов означает, что визуальные модели отслеживания очень похожи, как в предметах без предварительных знаний, так и в предметах с предварительнымизнаниями 7.
Таким образом, анализ мультимодно-многоканальных данных о SRL, полученных с использованием передовых технологий обучения (отслеживания глаз), является ключом к пониманию взаимодействия между когнитивными, метакогнитивными и мотивационными процессами, а также их влияние наобучение 29. Результаты и изучение различий в обучении имеют последствия для разработки учебных материалов и интеллектуальных систем обучения, оба из которых позволят персонализированное обучение, которое, вероятно, будет более эффективным и удовлетворительным длястудента 30.
В этом исследовании, было два исследования вопросы: (1) Будут ли значительные различия в результатах обучения и в глазной фиксации параметров между студентами и экспертами по сравнению с неэкспертными учителями в истории искусства дифференциации студентов с официальными степенями по сравнению со студентами с неопернитными степенями (Университет опыта - Образование для взрослых)? и (2) Будут ли кластеры каждого участника с результатами обучения и параметрами глазной фиксации совпадать с типом участников (студенты с официальными степенями, студенты с нео должностной степенью (Университет опыта - Образование для взрослых) и преподаватели)?
Этот протокол был составлен в соответствии с процессуальными нормами Биоэтического комитета Университета Бургоса (Испания) No No No IR27/2019. До своего участия участники были полностью осведомлены о целях исследования и представили свое информированное согласие. Они не получили никакой финансовой компенсации за свое участие.
1. Набор участников
Таблица 2. Характеристики образца. Пожалуйста, нажмите здесь, чтобы загрузить эту таблицу.
2. Экспериментальная процедура
Таблица 3. Анкета для интервью. Пожалуйста, нажмите здесь, чтобы загрузить эту таблицу.
Рисунок 1. Процесс калибровки слежения за глазами Пожалуйста, нажмите здесь, чтобы просмотреть большую версию этой фигуры.
Рисунок 2. Кроссворд, чтобы проверить приобретенные знания. Пожалуйста, нажмите здесь, чтобы просмотреть большую версию этой цифры.
Рисунок 3. Фазы экспериментальной процедуры. Пожалуйста, нажмите здесь, чтобы просмотреть большую версию этой цифры.
36 участников, набранных для настоящего исследования, были из трех групп взрослых (студенты из университета опыта, университетские профессора, а также студенты и магистра студенты) со возрастом от 18 до 69 лет(таблица 2). Протокол тестировался в течение 20 месяцев ?...
Результаты исследования показали, что средняя продолжительность фиксации на соответствующих стимулах была больше среди участников с предыдущими знаниями. Аналогичным образом, основное внимание в этой группе уделяется средним точкам информации (проксимальной и дистальной)7...
Авторы заявляют, что у них нет конкурирующих финансовых интересов.
Работа была разработана в рамках проекта "Саморегулируемое обучение в SmartArt Erasmus" Образование для взрослых" 2019-1-ES01-KA204-095615-Координатор 6, финансируемый Европейской комиссией. Видеозапись этапа завершения задачи имела предварительное информированное согласие Рут Веласко Саиса. Мы высоко ценим участие преподавателей и студентов в этапе реализации задач.
Name | Company | Catalog Number | Comments |
iViewer XTM | iViewer | ||
SMI Experimenter Center 3.0 | SMI | ||
SMI Be Gaze | SMI |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеСмотреть дополнительные статьи
This article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены