JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biochemistry

Optimized Incorporation of Alkynyl Fatty Acid Analogs for the Detection of Fatty Acylated Proteins using Click Chemistry

Published: April 9th, 2021

DOI:

10.3791/62107

1Department of Biology, University of Waterloo

Fatty acylation, the covalent addition of saturated fatty acids to protein substrates, is important in regulating a myriad of cellular functions in addition to its implications in cancer and neurodegenerative diseases. Recent developments in fatty acylation detection methods have enabled efficient and non-hazardous detection of fatty acylated proteins, particularly through the use of click chemistry with bio-orthogonal labeling. However, click chemistry detection can be limited by the poor solubility and potential toxic effects of adding long chain fatty acids to cell culture. Described here is a labeling approach with optimized delivery using saponified fatty acids in combination with fatty-acid free BSA, as well as delipidated media, which can improve detection of hard to detect fatty acylated proteins. This effect was most pronounced with the alkynyl-stearate analog, 17-ODYA, which has been the most commonly used fatty acid analog in click chemistry detection of acylated proteins. This modification will improve cellular incorporation and increase sensitivity to acylated protein detection. In addition, this approach can be applied in a variety of cell types and combined with other assays such as pulse-chase analysis, stable isotope labeling with amino acids in cell culture, and mass spectrometry for quantitative profiling of fatty acylated proteins.

Tags

Alkynyl Fatty Acid Analogs

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved