JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Engineering

Lumped-Parameter and Finite Element Modeling of Heart Failure with Preserved Ejection Fraction

Published: February 13th, 2021

DOI:

10.3791/62167

1Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 2Health Science and Technology Program, Harvard/Massachusetts Institute of Technology, 3Department of Mechanical Engineering, Massachusetts Institute of Technology
* These authors contributed equally

This work introduces two computational models of heart failure with preserved ejection fraction based on a lumped-parameter approach and finite element analysis. These models are used to evaluate the changes in the hemodynamics of the left ventricle and related vasculature induced by pressure overload and diminished ventricular compliance.

Scientific efforts in the field of computational modeling of cardiovascular diseases have largely focused on heart failure with reduced ejection fraction (HFrEF), broadly overlooking heart failure with preserved ejection fraction (HFpEF), which has more recently become a dominant form of heart failure worldwide. Motivated by the paucity of HFpEF in silico representations, two distinct computational models are presented in this paper to simulate the hemodynamics of HFpEF resulting from left ventricular pressure overload. First, an object-oriented lumped-parameter model was developed using a numerical solver. This model is based on a zero-dimensional (0D) Windkessel-like network, which depends on the geometrical and mechanical properties of the constitutive elements and offers the advantage of low computational costs. Second, a finite element analysis (FEA) software package was utilized for the implementation of a multidimensional simulation. The FEA model combines three-dimensional (3D) multiphysics models of the electro-mechanical cardiac response, structural deformations, and fluid cavity-based hemodynamics and utilizes a simplified lumped-parameter model to define the flow exchange profiles among different fluid cavities. Through each approach, both the acute and chronic hemodynamic changes in the left ventricle and proximal vasculature resulting from pressure overload were successfully simulated. Specifically, pressure overload was modeled by reducing the orifice area of the aortic valve, while chronic remodeling was simulated by reducing the compliance of the left ventricular wall. Consistent with the scientific and clinical literature of HFpEF, results from both models show (i) an acute elevation of transaortic pressure gradient between the left ventricle and the aorta and a reduction in the stroke volume and (ii) a chronic decrease in the end-diastolic left ventricular volume, indicative of diastolic dysfunction. Finally, the FEA model demonstrates that stress in the HFpEF myocardium is remarkably higher than in the healthy heart tissue throughout the cardiac cycle.

Heart failure is a leading cause of death worldwide, which occurs when the heart is unable to pump or fill adequately to keep up with the metabolic demands of the body. The ejection fraction, i.e., the relative amount of blood stored in the left ventricle that is ejected with each contraction is used clinically to classify heart failure into (i) heart failure with reduced ejection fraction (HFrEF) and (ii) heart failure with preserved ejection fraction (HFpEF), for ejection fractions less than or greater than 45%, respectively1,2,3. Symptoms of HFpEF often develop in response....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. 0D lumped-parameter model

  1. Simulation setup
    NOTE: In the numerical solver environment (see the Table of Materials), construct the domain as shown in Figure 1. This is composed of the 4-chamber heart, the upper body, abdominal, lower body, and thoracic compartments, as well as the proximal vasculature, including the aorta, the pulmonary artery, and the superior and inferior venae cavae. The standard elements used in this simulation are part of the default.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Results from the baseline simulations are illustrated in Figure 3. This depicts the pressure and volume waveforms of the left ventricle and the aorta (Figure 3A) as well as the left ventricular PV loop (Figure 3B). The two in silico models show similar aortic and left ventricular hemodynamics, which are within the physiologic range. Minor differences in the response predicted by the two platforms can be noticed during the ventricula.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The lumped-parameter and FEA platforms proposed in this work recapitulated the cardiovascular hemodynamics under physiologic conditions, both in the acute phase of stenosis-induced pressure overload and in chronic HFpEF. By capturing the role that pressure overload plays in the acute and chronic phases of HFpEF development, the results from these models are in agreement with the clinical literature of HFpEF, including the onset of a transaortic pressure gradient due to aortic stenosis, an increase in the left ventricular.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We acknowledge funding from the Harvard-Massachusetts Institute of Technology Health Sciences and Technology program, and the SITA Foundation Award from the Institute for Medical Engineering and Science.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Abaqus Software Dassault Systèmes Simulia Corp. Version used: 2018; FEA simulation software
HETVAL Dassault Systèmes Simulia Corp. Version used: 2018
Hydraulic (Isothermal) library MathWorks Version used: 2020a
Living Heart Human Model Dassault Systèmes Simulia Corp. Version used: V2_1, anatomically accurate FEA platform of 4-chamber adult human heart
MATLAB MathWorks Version used: 2020a, object-oriented numerical solver
SIMSCAPE FLUIDS MathWorks
UAMP Dassault Systèmes Simulia Corp. Version used: 2018
VUANISOHYPER Dassault Systèmes Simulia Corp. Version used: 2018

  1. Borlaug, B. A., Paulus, W. J. Heart failure with preserved ejection fraction: Pathophysiology, diagnosis, and treatment. European Heart Journal. 32 (6), 670-679 (2011).
  2. Borlaug, B. A., Kane, G. C., Melenovsky, V., Olson, T. P. Abnormal right ventricular-pulmonary artery coupling with exercise in heart failure with preserved ejection fraction. European Heart Journal. 37 (43), 3293-3302 (2016).
  3. Borlaug, B. A. Evaluation and management of heart failure with preserved ejection fraction. Nature Reviews Cardiology. 17 (9), 1-15 (2020).
  4. Carabello, B. A., Paulus, W. J. Aortic stenosis. The Lancet. 373 (9667), 956-966 (2009).
  5. Lam, C. S. P., Donal, E., Kraigher-Krainer, E., Vasan, R. S. Epidemiology and clinical course of heart failure with preserved ejection fraction. European Journal of Heart Failure. 13 (1), 18-28 (2011).
  6. Omote, K., et al. Left ventricular outflow tract velocity time integral in hospitalized heart failure with preserved ejection fraction. ESC Heart Failure. 7 (1), 167-175 (2020).
  7. Samson, R., Jaiswal, A., Ennezat, P. V., Cassidy, M., Jemtel, T. H. L. Clinical phenotypes in heart failure with preserved ejection fraction. Journal of the American Heart Association. 5 (1), (2016).
  8. Weber, K. T., Brilla, C. G., Janicki, J. S. Myocardial fibrosis: Functional significance and regulatory factors. Cardiovascular Research. 27 (3), 341-348 (1993).
  9. Borbély, A., et al. Cardiomyocyte stiffness in diastolic heart failure. Circulation. 111 (6), 774-781 (2005).
  10. Borlaug, B. A., Lam, C. S. P., Roger, V. L., Rodeheffer, R. J., Redfield, M. M. Contractility and Ventricular Systolic Stiffening in Hypertensive Heart Disease. Insights Into the Pathogenesis of Heart Failure With Preserved Ejection Fraction. Journal of the American College of Cardiology. 54 (5), 410-418 (2009).
  11. Penicka, M., et al. Heart Failure With Preserved Ejection Fraction in Outpatients With Unexplained Dyspnea. A Pressure-Volume Loop Analysis. Journal of the American College of Cardiology. 55 (16), 1701-1710 (2010).
  12. Owen, B., Bojdo, N., Jivkov, A., Keavney, B., Revell, A. Structural modelling of the cardiovascular system. Biomechanics and Modeling in Mechanobiology. 17 (5), 1217-1242 (2018).
  13. Zhou, S., et al. A review on low-dimensional physics-based models of systemic arteries: Application to estimation of central aortic pressure. BioMedical Engineering Online. 18 (1), 41 (2019).
  14. Sagawa, K., Lie, R. K., Schaefer, J. Translation of Otto frank's paper "Die Grundform des arteriellen Pulses" zeitschrift für biologie 37. Journal of Molecular and Cellular Cardiology. 22 (1899), 253-254 (1990).
  15. Rosalia, L., Ozturk, C., Van Story, D., Horvath, M., Roche, E. T. Object-oriented lumped-parameter modeling of the cardiovascular system for physiological and pathophysiological conditions. Advanced theory and simulations. , (2021).
  16. Lopez-Perez, A., Sebastian, R., Ferrero, J. M. Three-dimensional cardiac computational modelling: METHODS, features and applications. BioMedical Engineering Online. 14, 35 (2015).
  17. Xie, X., Zheng, M., Wen, D., Li, Y., Xie, S. A new CFD based non-invasive method for functional diagnosis of coronary stenosis. BioMedical Engineering Online. 17 (1), 36 (2018).
  18. Abaqus Dassault, S. . SIMULIA living heart human model user documentation. , (2017).
  19. Baillargeon, B., Rebelo, N., Fox, D. D., Taylor, R. L., Kuhl, E. The living heart project: A robust and integrative simulator for human heart function. European Journal of Mechanics, A/Solids. 48, 38-47 (2014).
  20. Moscato, F., et al. Use of continuous flow ventricular assist devices in patients with heart failure and a normal ejection fraction: a computer-simulation study. The Journal of Thoracic and Cardiovascular Surgery. 145 (5), 1352-1358 (2013).
  21. Fresiello, L., Meyns, B., Di Molfetta, A., Ferrari, G. A Model of the Cardiorespiratory Response to Aerobic Exercise in Healthy and Heart Failure Conditions. Frontiers in Physiology. 7 (189), (2016).
  22. Moscato, F., et al. Left ventricle afterload impedance control by an axial flow ventricular assist device: a potential tool for ventricular recovery. Artificial Organs. 34 (9), 736-744 (2010).
  23. Colacino, F. M., Moscato, F., Piedimonte, F., Arabia, M., Danieli, G. A. Left ventricle load impedance control by apical VAD can help heart recovery and patient perfusion: a numerical study. Asaio Journal. 53 (3), 263-277 (2007).
  24. Gu, K., et al. Lumped parameter model for heart failure with novel regulating mechanisms of peripheral resistance and vascular compliance. Asaio Journal. 58 (3), 223-231 (2012).
  25. Suga, H., Sagawa, K., Kostiuk, D. P. Controls of ventricular contractility assessed by pressure-volume ratio, Emax. Cardiovascular Research. 10 (5), 582-592 (1976).
  26. Fernandez de Canete, J., Saz-Orozco, P. d., Moreno-Boza, D., Duran-Venegas, E. Object-oriented modeling and simulation of the closed loop cardiovascular system by using SIMSCAPE. Computers in Biology and Medicine. 43 (4), 323-333 (2013).
  27. Heldt, T., Shim, E. B., Kamm, R. D., Mark, R. G., et al. Computational modeling of cardiovascular response to orthostatic stress. Journal of Applied Physiology. 92 (3), 1239-1254 (2002).
  28. Granegger, M., et al. A Valveless Pulsatile Pump for the Treatment of Heart Failure with Preserved Ejection Fraction: A Simulation Study. Cardiovascular Engineering and Technology. 10 (1), 69-79 (2019).
  29. Hay, I., Rich, J., Ferber, P., Burkhoff, D., Maurer, M. S. Role of impaired myocardial relaxation in the production of elevated left ventricular filling pressure. American Journal of Physiology-Heart and Circulatory Physiology. 288 (3), 1203-1208 (2005).
  30. Kadry, K., et al. Biomechanics of diastolic dysfunction: a one-dimensional computational modeling approach. American Journal of Physiology-Heart and Circulatory Physiology. 319 (4), 882-892 (2020).
  31. Luo, C., Ramachandran, D., Ware, D. L., Ma, T. S., Clark, J. W. Modeling left ventricular diastolic dysfunction: classification and key indicators. Theoretical Biology & Medical Modelling. 8, 14 (2011).
  32. Burkhoff, D., et al. Left atrial decompression pump for severe heart failure with preserved ejection fraction: theoretical and clinical considerations. JACC: Heart Failure. 3 (4), 275-282 (2015).
  33. Ahmad Bakir, A., Al Abed, A., Stevens, M. C., Lovell, N. H., Dokos, S. A Multiphysics Biventricular Cardiac Model: Simulations With a Left-Ventricular Assist Device. Frontiers in Physiology. 9 (1259), (2018).
  34. Genet, M., Lee, L. C., Baillargeon, B., Guccione, J. M., Kuhl, E. Modeling pathologies of diastolic and systolic heart failure. Annals of Biomedical Engineering. 44 (1), 112-127 (2016).
  35. Sack, K. L., et al. Investigating the Role of Interventricular Interdependence in Development of Right Heart Dysfunction During LVAD Support: A Patient-Specific Methods-Based Approach. Frontiers in Physiology. 9 (520), (2018).
  36. Baillargeon, B., et al. Human cardiac function simulator for the optimal design of a novel annuloplasty ring with a sub-valvular element for correction of ischemic mitral regurgitation. Cardiovascular Engineering and Technology. 6 (2), 105-116 (2015).
  37. Sack, K. L., et al. Partial LVAD Restores Ventricular Outputs and Normalizes LV but not RV Stress Distributions in the Acutely Failing Heart in Silico. The International Journal of Artificial Organs. 39 (8), 421-430 (2016).
  38. Baumgartner, H., et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. Journal of the American Society of Echocardiography. 22 (1), 1-23 (2009).
  39. Rajani, R., Hancock, J., Chambers, J. The art of assessing aortic stenosis. Heart. 98, 14 (2012).
  40. Vahanian, A., et al. Guidelines on the management of valvular heart disease: The Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology. European Heart Journal. 28 (2), 230-268 (2007).
  41. Matiwala, S., Margulies, K. B. Mechanical approaches to alter remodeling. Current Heart Failure Reports. 1 (1), 14-18 (2004).
  42. NIH Clinical Trials Registry. . ImCardia for DHF to Treat Diastolic Heart Failure (DHF) Patient a Pilot Study (ImCardia). , (2011).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved