A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol uses three-dimensional (3D) printers and laser cutters found in makerspaces in order to create a more flexible flight mill design. By using this technology, researchers can reduce costs, enhance design flexibility, and generate reproducible work when constructing their flight mills for tethered insect flight studies.
Makerspaces have a high potential of enabling researchers to develop new techniques and to work with novel species in ecological research. This protocol demonstrates how to take advantage of the technology found in makerspaces in order to build a more versatile flight mill for a relatively low cost. Given that this study extracted its prototype from flight mills built in the last decade, this protocol focuses more on outlining divergences made from the simple, modern flight mill. Previous studies have already shown how advantageous flight mills are to measuring flight parameters such as speed, distance, or periodicity. Such mills have allowed researchers to associate these parameters with morphological, physiological, or genetic factors. In addition to these advantages, this study discusses the benefits of using the technology in makerspaces, like 3D printers and laser cutters, in order to build a more flexible, sturdy, and collapsible flight mill design. Most notably, the 3D printed components of this design allow the user to test insects of various sizes by making the heights of the mill arm and infrared (IR) sensors adjustable. The 3D prints also enable the user to easily disassemble the machine for quick storage or transportation to the field. Moreover, this study makes greater use of magnets and magnetic paint to tether insects with minimal stress. Lastly, this protocol details a versatile analysis of flight data through computer scripts that efficiently separate and analyze differentiable flight trials within a single recording. Although more labor-intensive, applying the tools available in makerspaces and on online 3D modeling programs facilitates multidisciplinary and process-orientated practices and helps researchers avoid costly, premade products with narrowly adjustable dimensions. By taking advantage of the flexibility and reproducibility of technology in makerspaces, this protocol promotes creative flight mill design and inspires open science.
Given how intractable the dispersal of insects is in the field, the flight mill has become a common laboratory tool to address an important ecological phenomenon - how insects move. As a consequence, since the pioneers of the flight mill1,2,3,4 ushered in six decades of flight mill design and construction, there have been noticeable design shifts as technologies improved and became more integrated into scientific communities. Over time, automated data-collecting software replaced chart recorders, and flight mill arms transitioned from glass rods to carbon rods and steel tubing5. In the last decade alone, magnetic bearings replaced Teflon or glass bearings as optimally frictionless, and pairs between flight mill machinery and versatile technology have been proliferating as audio, visual, and layer fabrication technology become increasingly integrated into researchers' workflows. These pairings have included high-speed video cameras to measure wing aerodynamics6, digital-to-analog boards to mimic sensory cues for studying auditory flight responses7, and 3D printing to make a calibration rig to track wing deformation during flight8. With the recent rise of emerging technologies at makerspaces, particularly at institutions with digital media centers run by knowledgeable staff9, there are greater possibilities to enhance the flight mill to test a larger range of insects and to transport the device to the field. There is also a high potential for researchers to cross disciplinary boundaries and accelerate technical learning through production-based work9,10,11,12. The flight mill presented here (adapted from Attisano and colleagues13) takes advantage of emerging technologies found in makerspaces to not only 1) create flight mill components whose scales and dimensions are fine-tuned to the project at hand but also 2) offer researchers an accessible protocol in laser cutting and 3D printing without demanding a high-budget or any specialized knowledge in computer-aided design (CAD).
The benefits of coupling new technologies and methods with the flight mill are substantial, but flight mills are also valuable stand-alone machines. Flight mills measure insect flight performance and are used to determine how flight speed, distance, or periodicity relates to environmental or ecological factors, such as temperature, relative humidity, season, host plant, body mass, morphological traits, age, and reproductive activity. Distinct from alternative methods like actographs, treadmills, and the video recording of flight movement in wind tunnels and indoor arenas14, the flight mill is notable for its ability to collect various flight performance statistics under laboratory conditions. This helps ecologists address important questions on flight dispersal, and it helps them progress in their discipline - whether that be integrated pest management15,16,17, population dynamics, genetics, biogeography, life-history strategies18, or phenotypic plasticity19,20,21,22. On the other hand, devices like high-speed cameras and actographs can require a strict, complicated, and expensive setup, but they can also lead to more fine-tuned movement parameters, such as wing-beat frequencies and insect photophase activity23,24. Thus, the flight mill presented here serves as a flexible, affordable, and customizable option for researchers to investigate flight behavior.
Likewise, the incentive to integrate emerging technologies into ecologists' workflow continues to rise as questions and approaches to studying dispersal become more creative and complex. As locations that promote innovation, makerspaces draw in multiple levels of expertise and offer a low learning curve for users of any age to acquire new technical skills10,12. The iterative and collaborative nature of prototyping scientific devices in the makerspace and through online open sources can accelerate the application of theory11 and facilitate product development in the ecological sciences. Furthermore, increasing the reproducibility of scientific tools will encourage wider data collection and open science. This can help researchers standardize equipment or methods for measuring dispersal. Standardizing tools could further allow ecologists to unify dispersal data across populations in order to test metapopulation models that develop from dispersal kernels25 or source-sink colonization dynamics26. Much like how the medical community is adopting 3D printing for patient care and anatomy education27, ecologists can use laser cutters and 3D printers to redesign ecological tools and education and, within the scope of this study, can design additional flight mill components, such as landing platforms or a flight mill arm that can move vertically. In turn, the customization, cost-effectiveness, and increased productivity offered by makerspace technology can help start up dispersal projects with a relatively low barrier for researchers who intend to develop their own tools and devices.
To construct this flight mill, there are also mechanical and instrumental limitations that can be considered by the maker. Magnets and 3D printed enhancements allow the flight mill to be essentially glueless, except for the construction of the cross brackets, and to be accommodable to insects of different sizes. However, as the mass and the strength of insects increase, insects may be more likely to dismount themselves while tethered. Strong magnets can be used at the cost of increased torsional drag, or ball bearings can replace magnetic bearings as a robust solution for flight testing insects that weigh several grams28,29. Nevertheless, ball bearings can also present some problems, mainly that running prolonged experiments with high speeds and high temperatures can degrade the lubrication of ball bearings, which increases friction30. Thus, users will have to discern which flight mill mechanics would best suit their insect(s) of study and experimental design.
Similarly, there are several ways to instrument a flight mill that is beyond this paper's considerations. The flight mill presented here uses IR sensors to detect revolutions, WinDAQ software to record revolutions, and programming scripts to process the raw data. Although it is easy-to-use, the WinDAQ software has a limited array of tools available. Users cannot attach comments to their corresponding channel, and they cannot be alerted if any component of the circuitry fails. These cases are solved by detecting and correcting them through code but only after data collection. Alternatively, users can adopt more than one software that offers customizable data collection features28 or sensors that take direct speed and distance statistics, like bike milometers29. However, these alternatives can bypass valuable raw data or diffuse functionality across too many software applications, which can make data processing inefficient. Ultimately, rather than refashioning flight mill instrumentation, this protocol offers robust programming solutions to present-day software limitations.
In this paper, a design for an enhanced simple flight mill is described to aid researchers in their dispersal studies and to encourage the incorporation of emerging technologies in the field of behavioral ecology. This flight mill fits within the constraints of an incubator, holds up to eight insects simultaneously, and automates data collection and processing. Notably, its 3D printed enhancements allow the user to adjust the mill arm and IR sensor heights to test insects of various sizes and to disassemble the device for quick storage or transportation. Thanks to institutional access to a communal makerspace, all enhancements were free, and no additional costs were accrued compared to the simple, modern flight mill. All software needed are free, the electronic circuitry is simple, and all scripts can be modified to follow the specific needs of the experimental design. Moreover, coded diagnostics allow the user to check the integrity and precision of their recordings. Lastly, this protocol minimizes the stress sustained by an insect by magnetically painting and tethering insects to the mill arm. With the assembly of the simple flight mill being already accessible, affordable, and flexible, the use of makerspace technologies to enhance the simple flight mill can grant researchers the space to overcome their own specific flight study needs and can inspire creative flight mill designs beyond this paper's considerations.
1. Build the Flight Mill in a Makerspace
2. Conduct Flight Trials
3. Analyze Flight Data
Flight data were obtained experimentally during Winter 2020 using field collected J. haematoloma from Florida as the model insects (Bernat, A. V. and Cenzer, M. L. , 2020, unpublished data). Representative flight trials were conducted in the Department of Ecology and Evolution at the University of Chicago, as shown below in Figure 6, Figure 7, Figure 8, and Figure 9. The flight m...
The simple, modern flight mill provides a range of advantages for researchers interested in studying tethered insect flight by delivering a reliable and automated design that tests multiple insects efficiently and cost-effectively13,31,35. Likewise, there is a strong incentive for researchers to adopt fast-emerging technologies and techniques from industry and other scientific fields as a means to build experimental to...
The author has nothing to disclose.
I would like to thank Meredith Cenzer for purchasing all flight mill materials and providing continuous feedback from the construction to the write-up of the project. I also thank Ana Silberg for her contributions to standardize_troughs.py. Finally, I thank the Media Arts, Data, and Design Center (MADD) at the University of Chicago for permission to use its communal makerspace equipment, technology, and supplies free of charge.
Name | Company | Catalog Number | Comments |
180 Ω Resistor | E-Projects | 10EP514180R | Carbon film; stiff 24 gauge lead. |
19 Gauge Non-Magnetic Hypodermic Steel Tubing | MicroGroup | 304H19RW | |
2.2 kΩ Resistor | Adafruit | 2782 | Carbon film; stiff 24 gauge lead. |
3D Printer | FlashForge | 700355100638 | |
3D Printer Filament | FlashForge | 700355100638 | Diameter 1.75 mm; 1kg/roll. |
3D Printing Slicing Software | FlashPrint | 4.4.0 | |
Acrylic Plastic Sheets | Blick Art Supplies | 28945-1006 | |
Aluminum Foil | Target | 253-01-0860 | |
Breadboard Power Supply | HandsOn Tech | MDU1025 | Can take 6.5V to 12V input and can produce 3.3V and 5V. |
DI-1100 USB Data Logger | DATAQ Instruments | DI-1100 | Has 4 differential armored analog inputs. |
Electrical Wires | Striveday | B077HWS5XV | 24 gauge solid wire. |
Entomological Pins | BioQuip | 1208S2 | Size 2; diameter 0.45 mm. |
Filtered 20 uL Pipette Tip | Fisher Scientific | 21-402-550 | |
Hot Glue Gun with Hot Glue | Joann Fabrics | 17366956 | |
IR Sensor | Adafruit | 2167 | This is the 3 mm IR version; works up to 25 cm. |
Large Clear Vinyl Tubing | Home Depot | T10007008 | Inner diameter 3/8 in; outer diameter 1/2 in; length 20 ft. |
Large Magnets | Bunting | EP654 | Low-friction N42 neodymium; diameter 0.394 in; length 0.157 in; holding force 4.9 lb. |
Laser Cutter | Universal Laser Systems | PLS6.75 | |
M5 Hex Nut | Home Depot | 204274112 | Thread pitch 0.8 mm; screw length 20 mm; diameter 5 mm. |
M5 Long Iron Screws | Home Depot | 204283784 | Philips pan head; thread pitch 0.8 mm; screw length 20 mm; diameter 5 mm. |
M5 Short Iron Screws | Home Depot | 203540129 | Philips pan head; thread pitch 0.8 mm; screw length 10 mm; diameter 5 mm. |
Neoprene Rubber Sheet | Grainger | 60DC16 | Length 12 in; width 12 in; depth 1/8in. |
Online 3D Modeling Software | Autodesk | 2019_10_14 | Tinkercad.com offers a free account. |
Power Adaptor | Adafruit | 63 | 9 VDC 1000mA regulated switching; input voltage DC 3.3V 5V. |
Small Clear Vinyl Tubing | Home Depot | T10007005 | Inner diameter 1/4 in; outer diameter 3/8 in; 20 ft long. |
Small Magnets | Bunting | N42P120060 | Low-friction N42 neodymium; diameter 0.120 in; length 0.060 in; holding force 0.5 lb. |
Solderless MB-102 Breadboard | Adafruit | 239 | 830 tie points; length 17 cm; width 5.5 cm; input voltage, DC 3.3 V 5 V. |
Sophisticated Finishes Iron Metallic Surfacer | Blick Art Supplies | 27105-2584 | |
Wire Cutters | Target | 84-031W |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved