A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
A headspace solid-phase microextraction-gas-chromatography platform is described here for fast, reliable, and semi-automated volatile identification and quantification in ripe blackcurrant fruits. This technique can be used to increase knowledge about fruit aroma and to select cultivars with enhanced flavor for the purpose of breeding.
There is an increasing interest in measuring volatile organic compounds (VOCs) emitted by ripe fruits for the purpose of breeding varieties or cultivars with enhanced organoleptic characteristics and thus, to increase consumer acceptance. High-throughput metabolomic platforms have been recently developed to quantify a wide range of metabolites in different plant tissues, including key compounds responsible for fruit taste and aroma quality (volatilomics). A method using headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) is described here for the identification and quantification of VOCs emitted by ripe blackcurrant fruits, a berry highly appreciated for its flavor and health benefits.
Ripe fruits of blackcurrant plants (Ribes nigrum) were harvested and directly frozen in liquid nitrogen. After tissue homogenization to produce a fine powder, samples were thawed and immediately mixed with sodium chloride solution. Following centrifugation, the supernatant was transferred into a headspace glass vial containing sodium chloride. VOCs were then extracted using a solid-phase microextraction (SPME) fiber and a gas chromatograph coupled to an ion trap mass spectrometer. Volatile quantification was performed on the resulting ion chromatograms by integrating peak area, using a specific m/z ion for each VOC. Correct VOC annotation was confirmed by comparing retention times and mass spectra of pure commercial standards run under the same conditions as the samples. More than 60 VOCs were identified in ripe blackcurrant fruits grown in contrasting European locations. Among the identified VOCs, key aroma compounds, such as terpenoids and C6 volatiles, can be used as biomarkers for blackcurrant fruit quality. In addition, advantages and disadvantages of the method are discussed, including prospective improvements. Furthermore, the use of controls for batch correction and minimization of drift intensity have been emphasized.
Flavor is an essential quality trait for any fruit, impacting consumer acceptance and thus significantly affecting marketability. Flavor perception involves a combination of the taste and olfactory systems and depends chemically on the presence and concentration of a wide range of compounds that accumulate in edible plant parts, or in case of VOCs, are emitted by the ripe fruit1,2. While traditional breeding has focused on agronomic traits such as yield and pest resistance, fruit quality trait improvement, including flavor, has long been neglected due to the genetic complexity and the difficulty to properly phenotype these characteristics, leading to consumer discontent3,4. Recent advances in metabolomic platforms have been successful in identifying and quantifying key compounds responsible for fruit taste and aroma5,6,7,8. Furthermore, the combination of metabolite profiling with genomic or transcriptomic tools allows the elucidation of the genetics underlying fruit flavor, which in turn will help breeding programs develop new varieties with enhanced organoleptic characteristics2,4,9,10,11,12,13,14.
Blackcurrant (Ribes nigrum) berries are highly appreciated for their flavor and nutritional properties, being widely cultivated across the temperate zones of Europe, Asia, and New Zealand15. Most of the production is processed for food products and beverages, which are very popular in the Nordic countries, mainly due to the berries' organoleptic properties. The intense color and flavor of the fruit are the result of a combination of anthocyanins, sugars, acids, and VOCs present in the ripe fruits16,17,18. The analysis of blackcurrant volatiles goes back to the 1960s19,20,21. More recently, several studies have focused on blackcurrant VOCs, identifying important compounds for fruit aroma perception and assessing the impact of genotype, environment, or storage and processing conditions on VOC content5,17,18,22,23.
Because of its numerous advantages, the technique of choice for high-throughput volatile profiling is HS-SPME/GC-MS24,25. A silica fiber, coated with a polymeric phase, is mounted on a syringe device, allowing the adsorption of the volatiles in the fiber until an equilibrium phase is reached. Headspace extraction protects the fiber from the nonvolatile compounds present in the matrix24. SPME can successfully isolate a high number of VOCs present at highly variable concentrations (parts per billion to parts per million)25. In addition, it is a solvent-free technique that requires limited sample processing. Other advantages of HS-SPME are the ease of automation and its relatively low cost.
However, its success can be limited, depending on the chemical nature of the VOCs, the extraction protocol (including time, temperature, and salt concentration), sample stability, and the availability of sufficient fruit tissue26,27. This paper presents a protocol for blackcurrant VOCs isolated by HS-SPME and analyzed by gas chromatography coupled with an ion trap mass spectrometer. A balance between the quantity of plant material, sample stability, and duration of extraction and chromatography was achieved to be able to process high numbers of blackcurrant samples, some of them presented in this study. In particular, VOC profiles and/or chromatograms of five cultivars ('Andega', 'Ben Tron', 'Ben Gairn', 'Ben Tirran', and 'Tihope') will be presented and discussed as example data. Furthermore, the same protocol has been successfully put into practice for VOC measurement in other fruit berry species such as strawberry (Fragaria x ananassa), raspberry (Rubusidaeus), and blueberry (Vaccinium spp.).
1. Fruit harvesting
2. Fruit sample and reagent preparation
3. Sample preparation
4. HS-SPME/GC-MS data acquisition
5. Analysis of GC-MS profile chromatograms: VOC identification and semi-quantification
High-throughput VOC profiling in a large set of fruit crops grown under different conditions or locations or belonging to distinct genotypes is necessary for accurate aroma phenotyping. Here, a fast and semi-automated HS-SPME/GC-MS platform for relative VOC quantification in blackcurrant cultivars is presented. VOC detection and identification were based on a library that was developed to profile berry fruit species (Table 1). A typical ripe blackcurrant fruit volatile profile (total ion chromatogram) ob...
Breeding for fruit aroma has long been hindered by the complex genetics and biochemistry underlying the synthesis of volatile compounds and the lack of technologies for proper phenotyping. However, recent advances in metabolomic platforms, combined with genomic tools, are finally allowing the identification of the metabolites responsible for consumer preferences and to breed crops with improved flavor3. While most progress has been achieved in the model fruit, tomato9,...
The authors declare no conflict of interest.
The authors thank the Servicios Centrales de Apoyo a la Investigación from University of Malaga for HS-SPME/GC-MS measurements. We acknowledge the assistance of Sara Fernández-Palacios Campos in volatile quantification. We also thanks GoodBerry´s consortium members for providing the fruit material.
Name | Company | Catalog Number | Comments |
10 mL screw top headspace vials | Thermo Scientific | 10-HSV | |
18 mm screw cap Silicone/PTFE | Thermo Scientific | 18-MSC | |
5 mL Tube with HDPE screw cap | VWR | 216-0153 | |
Centrifuge | Thermo Scientific | 75002415 | |
Methanol for HPLC | Merck | 34860-1L-R | |
N-pentadecane (D32, 98%) | Cambridge Isotope Laboratories | DLM-1283-1 | |
Sodium chloride | Merck | S9888 | |
SPME fiber PDMS/DVB | Merck | 57345-U | |
Stainless grinding jars for TissueLyser | Qiagen | 69985 | |
TissueLyser II | Qiagen | 85300 | Can be subsituted by mortar and pestle or cryogenic mill |
Trace GC gas chromatograph-ITQ900 ion trap mass spectrometer | Thermo Scientific | ||
Triplus RSH autosampler with automated SPME device | Thermo Scientific | 1R77010-0450 | |
Water for HPLC | Merck | 270733-1L | |
Xcalibur 4.2 SP1 | Thermo Scientific | software |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved