JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

Creation of a High-Fidelity, Low-Cost, Intraosseous Line Placement Task Trainer via 3D Printing

Published: August 17th, 2022

DOI:

10.3791/62434

1Department of Anesthesiology, University of Nebraska Medical Center, 2Department of Surgery, University of Nebraska Medical Center

We describe a procedure to process computed tomography (CT) scans into high-fidelity, reclaimable, and low-cost procedural task trainers. The CT scan identification processes, export, segmentation, modeling, and 3D printing are all described, along with the issues and lessons learned in the process.

The description of procedural task trainers includes their use as a training tool to hone technical skills through repetition and rehearsal of procedures in a safe environment before ultimately performing the procedure on a patient. Many procedural task trainers available to date suffer from several drawbacks, including unrealistic anatomy and the tendency to develop user-created 'landmarks' after the trainer tissue undergoes repeated manipulations, potentially leading to inappropriate psychomotor skill development. To ameliorate these drawbacks, a process was created to produce a high-fidelity procedural task trainer, created from anatomy obtained from computed tomography (CT) scans, that utilize ubiquitous three-dimensional (3D) printing technology and off-the-shelf commodity supplies.

This method includes creating a 3D printed tissue mold capturing the tissue structure surrounding the skeletal element of interest to encase the bony skeletal structure suspended within the tissue, which is also 3D printed. A tissue medium mixture, which approximates tissue in both high-fidelity geometry and tissue density, is then poured into a mold and allowed to set. After a task trainer has been used to practice a procedure, such as intraosseous line placement, the tissue media, molds, and bones are reclaimable and may be reused to create a fresh task trainer, free of puncture sites and manipulation defects, for use in subsequent training sessions.

Patient care competency of procedural skills is a critical component for developing trainees in civilian and military healthcare1,2 environments. Procedural skills development is particularly important for procedure-intensive specialties such as anesthesiology3 and front-line medical personnel. Task trainers may be used to rehearse numerous procedures with skill levels ranging from those of a first-year medical student or medical technician to a senior resident or fellow. While many medical procedures require significant training to complete, the task presented here-placement of an inte....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NOTE: The University of Nebraska Medical Center Institutional Review Board determined that our study did not constitute human subject research. The local IRB obtained ethical approval and waiver of informed consent. Complete anonymization of imaging data was done before analysis per the hospital de-identification protocol.

1. Data

  1. Obtain a CT scan capturing the anatomy of interest for the planned task trainer. Be careful to take into consideration the working volume limitations of .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Following the protocol, the modeling of the task trainer utilized a CT scan of a de-identified patient. Segmentation of the CT images utilized 3D Slicer software and Auto Meshmixer for 3D modeling. For 3D printing, both 3D Simplify and the Prusa i3 MK3 were used (Figure 1). Subsequently, we completed the assembly of the 3D-printed parts, prepared the tissue media mixture, and poured the media mixture into the assembled task trainer mold. Following a training period with the task trainer, the.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

In this protocol we detail a 3D task trainer's development process to train the infrequently performed and life-saving procedure of IO line placement. This self-guided protocol uses 3D printing to produce the bulk of the model structures, while the remainder of the components used to assemble the task trainer are ubiquitous, easily obtainable, and non-toxic materials that may be reclaimed and reused. The 3D task trainer is low-cost and requires minimum expertise to create and assemble. We have successfully used our 3D IO.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The funding for this project was provided solely from institutional or departmental resources.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
3D printer filament, poly-lactic acid (PLA), 1.75 mm N/A / Hatchbox Base for 3D printing molds, bone structures, and bone / mold hardware
3D printer, Original Prusa i3 MK3 Prusa To print molds, bone structures, and bone / mold hardware
bleach, household (6% sodium hypochlorite) Clorox Animicrobial additive for tissue media
bolts, 1/4”, flat / countersunk or round head, various lengths N/A Hardware used to hold mold casing halves together during casting
Bucket, 5 gallon, plastic N/A To hold tissue media during media preparation
chlorhexidine, 4% solution w/v Animicrobial additive for tissue media
drill, household 3/8’ chuck N/A To stir tissue media during media preparation
food coloring, red (optional) N/A Coloring additive for simulated bone marrow
gelatin, unflavored Knox Base for tissue media
hex nuts, 1/4” N/A Hardware used to hold mold casing halves together during casting
Non-stick cooking spray N/A Mold releasing agent
plastic bags, ziplock Ziplock To store tissue media
psyllium husk fiber, finely ground, orange flavored, sugar free (optional) Procter & Gamble Metamucil Opacity / Echogenicity additive for tissue media
screwdriver, flat / Phillips (matching bolt hardware) N/A To tighten mold casing hardware
silicone gasket cord stock, 3mm, round, various lengths N/A Gasket media for mold casings
spray adhesive, Super 77 (optional) 3M Agent used to improve bed adhesion during 3D printing
stirring paddle / rod To stir tissue media during media preparation
turkey baster, household, ## mL N/A To inject simulated bone marrow into bone marrow cavity
ultrasound gel Base for simulated bone marrow
water, tap Used in both tissue media and simulated bone marrow

  1. Farrow, D. R. Reducing the risks of military aircrew training through simulation technology. Performance and Instruction. 21 (2), 13-18 (1982).
  2. Lateef, F. Simulation-based learning: Just like the real thing. Journal of Emergencies, Trauma, Shock. 3 (4), 348-352 (2010).
  3. Gaba, D. M. Crisis resource management and teamwork training in anaesthesia. British Journal of Anaesthesia. 105 (1), 3-6 (2010).
  4. Al-Elq, A. H. Simulation-based medical teaching and learning. Journal of Family & Community Medicine. 17 (1), 35-40 (2010).
  5. Hays, R. T., Singer, M. J. . Simulation fidelity in training system design: Bridging the gap between reality and training. , (2012).
  6. Green, M., Tariq, R., Green, P. Improving patient safety through simulation training in anesthesiology: Where are we. Anesthesiology Research and Practice. , 4237523 (2016).
  7. Olympio, M. A. Simulation saves lives. American Society of Anesthesiologists Newsletter. , 15-19 (2001).
  8. Murphy, M., et al. Simulation-based multidisciplinary team training decreases time to critical operations for trauma patients. Injury. 49 (5), 953-958 (2018).
  9. Jensen, A. R., et al. Simulation-based training is associated with lower risk-adjusted mortality in ACS pediatric TQIP centers. Journal of Trauma and Acute Care Surgery. 87 (4), 841-848 (2019).
  10. Gupta, A., Peckler, B., Schoken, D. Introduction of hi-fidelity simulation techniques as an ideal teaching tool for upcoming emergency medicine and trauma residency programs in India. Journal of Emergencies, Trauma, and Shock. 1 (1), 15-18 (2008).
  11. Risser, D. T., et al. The potential for improved teamwork to reduce medical errors in the emergency department. Annals of Emergency Medicine. 34 (3), 373-383 (1999).
  12. Shapiro, M. J., et al. Simulation based teamwork training for emergency department staff: Does it improve clinical team performance when added to an existing didactic teamwork curriculum. Quality and Safety in Health Care. 13 (6), 417-421 (2004).
  13. Schebesta, K., et al. Degrees of reality: Airway anatomy of high-fidelity human patient simulators and airway trainers. Anesthesiology. 116 (6), 1204-1209 (2012).
  14. Crofts, J. F., et al. Training for shoulder dystocia: A trial of simulation using low-fidelity and high-fidelity mannequins. Obstetrics and Gynecology. 108 (6), 1477-1485 (2006).
  15. Cox, R. W., et al. A (sort of) new image data format standard: NiFTI-1. 10th Annual Meeting of the Organization for Human Brain Mapping. , 22 (2004).
  16. Bude, R., Adler, R. An easily made, low-cost, tissue-like ultrasound phantom material. Journal of Clinical Ultrasound. 23 (4), 271-273 (1995).
  17. Fisher, J., et al. Clinical skills temporal degradation assessment in undergraduate medical education. Journal of Advances in Medical Education & Professionalism. 6 (1), 1-5 (2018).
  18. Buzink, S. N., Goossens, R. H., Schoon, E. J., de Ridder, H., Jakimowicz, J. J. Do basic psychomotor skills transfer between different image-based procedures. World Journal of Surgery. 34 (5), 933-940 (2010).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved