A subscription to JoVE is required to view this content. Sign in or start your free trial.
We describe a procedure to process computed tomography (CT) scans into high-fidelity, reclaimable, and low-cost procedural task trainers. The CT scan identification processes, export, segmentation, modeling, and 3D printing are all described, along with the issues and lessons learned in the process.
The description of procedural task trainers includes their use as a training tool to hone technical skills through repetition and rehearsal of procedures in a safe environment before ultimately performing the procedure on a patient. Many procedural task trainers available to date suffer from several drawbacks, including unrealistic anatomy and the tendency to develop user-created 'landmarks' after the trainer tissue undergoes repeated manipulations, potentially leading to inappropriate psychomotor skill development. To ameliorate these drawbacks, a process was created to produce a high-fidelity procedural task trainer, created from anatomy obtained from computed tomography (CT) scans, that utilize ubiquitous three-dimensional (3D) printing technology and off-the-shelf commodity supplies.
This method includes creating a 3D printed tissue mold capturing the tissue structure surrounding the skeletal element of interest to encase the bony skeletal structure suspended within the tissue, which is also 3D printed. A tissue medium mixture, which approximates tissue in both high-fidelity geometry and tissue density, is then poured into a mold and allowed to set. After a task trainer has been used to practice a procedure, such as intraosseous line placement, the tissue media, molds, and bones are reclaimable and may be reused to create a fresh task trainer, free of puncture sites and manipulation defects, for use in subsequent training sessions.
Patient care competency of procedural skills is a critical component for developing trainees in civilian and military healthcare1,2 environments. Procedural skills development is particularly important for procedure-intensive specialties such as anesthesiology3 and front-line medical personnel. Task trainers may be used to rehearse numerous procedures with skill levels ranging from those of a first-year medical student or medical technician to a senior resident or fellow. While many medical procedures require significant training to complete, the task presented here-placement of an inte....
NOTE: The University of Nebraska Medical Center Institutional Review Board determined that our study did not constitute human subject research. The local IRB obtained ethical approval and waiver of informed consent. Complete anonymization of imaging data was done before analysis per the hospital de-identification protocol.
1. Data
Following the protocol, the modeling of the task trainer utilized a CT scan of a de-identified patient. Segmentation of the CT images utilized 3D Slicer software and Auto Meshmixer for 3D modeling. For 3D printing, both 3D Simplify and the Prusa i3 MK3 were used (Figure 1). Subsequently, we completed the assembly of the 3D-printed parts, prepared the tissue media mixture, and poured the media mixture into the assembled task trainer mold. Following a training period with the task trainer, the.......
In this protocol we detail a 3D task trainer's development process to train the infrequently performed and life-saving procedure of IO line placement. This self-guided protocol uses 3D printing to produce the bulk of the model structures, while the remainder of the components used to assemble the task trainer are ubiquitous, easily obtainable, and non-toxic materials that may be reclaimed and reused. The 3D task trainer is low-cost and requires minimum expertise to create and assemble. We have successfully used our 3D IO.......
The funding for this project was provided solely from institutional or departmental resources.
....Name | Company | Catalog Number | Comments |
3D printer filament, poly-lactic acid (PLA), 1.75 mm | N/A / Hatchbox | Base for 3D printing molds, bone structures, and bone / mold hardware | |
3D printer, Original Prusa i3 MK3 | Prusa | To print molds, bone structures, and bone / mold hardware | |
bleach, household (6% sodium hypochlorite) | Clorox | Animicrobial additive for tissue media | |
bolts, 1/4”, flat / countersunk or round head, various lengths | N/A | Hardware used to hold mold casing halves together during casting | |
Bucket, 5 gallon, plastic | N/A | To hold tissue media during media preparation | |
chlorhexidine, 4% solution w/v | Animicrobial additive for tissue media | ||
drill, household 3/8’ chuck | N/A | To stir tissue media during media preparation | |
food coloring, red (optional) | N/A | Coloring additive for simulated bone marrow | |
gelatin, unflavored | Knox | Base for tissue media | |
hex nuts, 1/4” | N/A | Hardware used to hold mold casing halves together during casting | |
Non-stick cooking spray | N/A | Mold releasing agent | |
plastic bags, ziplock | Ziplock | To store tissue media | |
psyllium husk fiber, finely ground, orange flavored, sugar free (optional) | Procter & Gamble | Metamucil | Opacity / Echogenicity additive for tissue media |
screwdriver, flat / Phillips (matching bolt hardware) | N/A | To tighten mold casing hardware | |
silicone gasket cord stock, 3mm, round, various lengths | N/A | Gasket media for mold casings | |
spray adhesive, Super 77 (optional) | 3M | Agent used to improve bed adhesion during 3D printing | |
stirring paddle / rod | To stir tissue media during media preparation | ||
turkey baster, household, ## mL | N/A | To inject simulated bone marrow into bone marrow cavity | |
ultrasound gel | Base for simulated bone marrow | ||
water, tap | Used in both tissue media and simulated bone marrow |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved