Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We describe a procedure to process computed tomography (CT) scans into high-fidelity, reclaimable, and low-cost procedural task trainers. The CT scan identification processes, export, segmentation, modeling, and 3D printing are all described, along with the issues and lessons learned in the process.

Abstract

The description of procedural task trainers includes their use as a training tool to hone technical skills through repetition and rehearsal of procedures in a safe environment before ultimately performing the procedure on a patient. Many procedural task trainers available to date suffer from several drawbacks, including unrealistic anatomy and the tendency to develop user-created 'landmarks' after the trainer tissue undergoes repeated manipulations, potentially leading to inappropriate psychomotor skill development. To ameliorate these drawbacks, a process was created to produce a high-fidelity procedural task trainer, created from anatomy obtained from computed tomography (CT) scans, that utilize ubiquitous three-dimensional (3D) printing technology and off-the-shelf commodity supplies.

This method includes creating a 3D printed tissue mold capturing the tissue structure surrounding the skeletal element of interest to encase the bony skeletal structure suspended within the tissue, which is also 3D printed. A tissue medium mixture, which approximates tissue in both high-fidelity geometry and tissue density, is then poured into a mold and allowed to set. After a task trainer has been used to practice a procedure, such as intraosseous line placement, the tissue media, molds, and bones are reclaimable and may be reused to create a fresh task trainer, free of puncture sites and manipulation defects, for use in subsequent training sessions.

Introduction

Patient care competency of procedural skills is a critical component for developing trainees in civilian and military healthcare1,2 environments. Procedural skills development is particularly important for procedure-intensive specialties such as anesthesiology3 and front-line medical personnel. Task trainers may be used to rehearse numerous procedures with skill levels ranging from those of a first-year medical student or medical technician to a senior resident or fellow. While many medical procedures require significant training to complete, the task presented here-placement of an inte....

Protocol

NOTE: The University of Nebraska Medical Center Institutional Review Board determined that our study did not constitute human subject research. The local IRB obtained ethical approval and waiver of informed consent. Complete anonymization of imaging data was done before analysis per the hospital de-identification protocol.

1. Data

  1. Obtain a CT scan capturing the anatomy of interest for the planned task trainer. Be careful to take into consideration the working volume limitations of .......

Representative Results

Following the protocol, the modeling of the task trainer utilized a CT scan of a de-identified patient. Segmentation of the CT images utilized 3D Slicer software and Auto Meshmixer for 3D modeling. For 3D printing, both 3D Simplify and the Prusa i3 MK3 were used (Figure 1). Subsequently, we completed the assembly of the 3D-printed parts, prepared the tissue media mixture, and poured the media mixture into the assembled task trainer mold. Following a training period with the task trainer, the.......

Discussion

In this protocol we detail a 3D task trainer's development process to train the infrequently performed and life-saving procedure of IO line placement. This self-guided protocol uses 3D printing to produce the bulk of the model structures, while the remainder of the components used to assemble the task trainer are ubiquitous, easily obtainable, and non-toxic materials that may be reclaimed and reused. The 3D task trainer is low-cost and requires minimum expertise to create and assemble. We have successfully used our 3D IO.......

Acknowledgements

The funding for this project was provided solely from institutional or departmental resources.

....

Materials

NameCompanyCatalog NumberComments
3D printer filament, poly-lactic acid (PLA), 1.75 mmN/A / HatchboxBase for 3D printing molds, bone structures, and bone / mold hardware
3D printer, Original Prusa i3 MK3PrusaTo print molds, bone structures, and bone / mold hardware
bleach, household (6% sodium hypochlorite)CloroxAnimicrobial additive for tissue media
bolts, 1/4”, flat / countersunk or round head, various lengthsN/AHardware used to hold mold casing halves together during casting
Bucket, 5 gallon, plasticN/ATo hold tissue media during media preparation
chlorhexidine, 4% solution w/vAnimicrobial additive for tissue media
drill, household 3/8’ chuckN/ATo stir tissue media during media preparation
food coloring, red (optional)N/AColoring additive for simulated bone marrow
gelatin, unflavoredKnoxBase for tissue media
hex nuts, 1/4”N/AHardware used to hold mold casing halves together during casting
Non-stick cooking sprayN/AMold releasing agent
plastic bags, ziplockZiplockTo store tissue media
psyllium husk fiber, finely ground, orange flavored, sugar free (optional)Procter & GambleMetamucilOpacity / Echogenicity additive for tissue media
screwdriver, flat / Phillips (matching bolt hardware)N/ATo tighten mold casing hardware
silicone gasket cord stock, 3mm, round, various lengthsN/AGasket media for mold casings
spray adhesive, Super 77 (optional)3MAgent used to improve bed adhesion during 3D printing
stirring paddle / rodTo stir tissue media during media preparation
turkey baster, household, ## mLN/ATo inject simulated bone marrow into bone marrow cavity
ultrasound gelBase for simulated bone marrow
water, tapUsed in both tissue media and simulated bone marrow

References

Explore More Articles

3D PrintingTask TrainerIntraosseous Line PlacementCT ScanAnatomyHigh fidelityLow costAutodesk Fusion 360Mesh To B rep ConversionAnatomical ModelsMedical Simulation

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved