A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The study describes a protocol for creating large (µg-mg) quantities of DNA for protein screening campaigns from synthetic gene fragments without cloning or using living cells. The minimal template is enzymatically digested and circularized and then amplified using isothermal rolling circle amplification. Cell-free expression reactions could be performed with the unpurified product.
This protocol describes the design of a minimal DNA template and the steps for enzymatic amplification, enabling rapid prototyping of assayable proteins in less than 24 h using cell-free expression. After receiving DNA from a vendor, the gene fragment is PCR-amplified, cut, circularized, and cryo-banked. A small amount of the banked DNA is then diluted and amplified significantly (up to 106x) using isothermal rolling circle amplification (RCA). RCA can yield microgram quantities of the minimal expression template from picogram levels of starting material (mg levels if all starting synthetic fragment is used). In this work, a starting amount of 20 pg resulted in 4 µg of the final product. The resulting RCA product (concatemer of the minimal template) can be added directly to a cell-free reaction with no purification steps. Due to this method being entirely PCR-based, it may enable future high-throughput screening efforts when coupled with automated liquid handling systems.
Cell-free gene expression (CFE) has emerged as a powerful tool with many applications. Such applications include disease detection1,2,3,4,5,6, micronutrient and small molecule detection7,8,9,10,11,12, biomanufacturing13,14,15,16,17,18, education19,20,21, manufacturing difficult proteins17,22,23,24,25,26,27, and variant screening23,28,29,30,31,32,33. This is due to the open nature of cell-free systems and the flexibility they confer. Many great review articles offer historical education and future perspectives on the technology34,35,36,37,38,39,40,41,42,43,44.
A typical cell-free reaction consists of three major components: cell extract, energy mix, and genetic template. Active cell extract contains all the necessary machinery for transcription and translation (TXTL) and can be processed in a variety of ways36. Glycolytic intermediates, electrolytes, amino acids, and cofactors in the energy mix support the TXTL process. It is a major source of variability in cell-free experiments45 and can be prepared in many ways34,46. Preparation of the genetic template has seen fewer improvements since traditional cloning methods result in plasmids with excellent expression characteristics. The downside to these traditional methods is the turnaround time and amount of biological expertise needed to construct and propagate them. Recent optimization efforts have resulted in simple 24-hour workflows for cell extract preparation47,48 that can be performed in parallel with energy mix preparation49,50. However, traditional cloning adds multiple days to the CFE prototyping timeline (Table 1)23. Quickly amplified PCR products from the commercial gene fragment can be used directly51, but this limits the number of prototyping experiments as only 1 µg of DNA is produced, which corresponds to approximately five reactions (traditional 15 µL volumes). With these additional steps of circularization and isothermal amplification, greater than milligram quantities of the DNA is possible (~5,000 reactions for 1 mg). This dramatically increases the number of tests that can be made in high-throughput screening of proteins or combinatorial enzyme networks (cell-free metabolic engineering); it also allows for effective preservation of the linear template library as high concentration DNA. Furthermore, an increased amount of template would be necessary to prototype larger quantities of protein needed for material science applications (protein-based fibers and hydrogels). Some limitations of linear templates can be overcome by using an extract from BL21 DE3 Star or using recently discovered methods to protect linear templates from degradation52,53,54. However, this does not address having limited stocks of vendor-produced DNA for PCR amplification or the issue of biological expertise and equipment needed for cloning.
This work presents a protocol explicitly designed to increase the amount of expression template that can be obtained from small quantities of vendor-produced gene fragments (typically 500-1000 ng of lyophilized powder). The described method does not require the skills necessary to perform traditional cloning in plasmids or transforming and propagating in living cells. Upon receiving a gene fragment in the mail, a user can produce enough templates for many cell-free reactions by employing isothermal rolling circle amplification (RCA) (Figure 1)23. While the amount of DNA received from the vendor may be enough for limited screening efforts, it is quickly depleted, and re-purchasing gene fragments is time consuming and costly. The method is also especially well-suited for genes that are toxic and difficult to clone in E. coli.
1. Designing the gene fragment
NOTE: The gene fragment should have all the necessary genetic elements for transcription/translation, including promoter, ribosome binding site (RBS), start codon, the gene of interest, and terminator. While the terminator is not necessary for a linear expression template (LET), it will be important if the user decides to insert the sequence into a plasmid. These sequences were lifted from the pJL1-sfGFP plasmid55 (gift from Michael Jewett's lab), which uses a T7 promoter. In addition to these necessary genetic elements, a restriction enzyme cut site is added six base pairs before the promoter (5' cut site) and another six base pairs after the terminator (3' cut site), in this case using HindIII (other restriction enzymes can be used, but it is helpful to standardize the sequences with one high fidelity restriction enzyme to reduce the number needed to keep in the library). Primer sites are added ten base pairs upstream of the 5' cut site and ten base pairs downstream of the 3' cut site, in this case using standardized M13 primer sequences (primers are inexpensive stock items). The restriction enzyme site and primers used are at the discretion of the user. However, the user must ensure the sequences are not present anywhere else in the template (do not want to create unwanted cuts or sites of amplification initiation). The sequences for the templates used in this work are detailed in the supplemental material. These steps are used to modify from this base template.
2. Resuspending the gene fragment and the primers
NOTE: Upon receipt of the gene fragment, follow the manufacturer's protocols for resuspension or use this simple guide to create a DNA stock.
3. Amplifying the gene fragment via PCR
NOTE: Decide which PCR kit is right for the gene of interest. Smaller genes (<1,000 kb) may be more amenable to a cheaper Taq polymerase, while larger genes (≥1,000 kb) may benefit from high fidelity polymerase to reduce errors. It is important to note that this initial PCR amplification is not necessary if the user is not concerned with preserving the initial gene fragment (It provides multiple attempts at circularization and allows for comparative studies of LET vs. RCA product). It is also important to note that this PCR amplified LET can be used directly in reactions; however, as mentioned in the introduction, it would only allow for a limited number of reactions if the further amplification steps were disregarded. Digestion and ligation can be performed on the resuspended gene fragment directly57 (if one is certain, they will not need more LET to perform additional circularization stocks). If this is the case, skip section 3 and continue to section 4. For performing PCR, follow these steps.
4. Digestion and circularization
NOTE: Further amplification can be achieved by circularizing the DNA followed by RCA. Digest the DNA to prepare the template for circularization. This will remove the primer sequences and create sticky ends at both the 5' and 3' ends of the template. Reattach these ends via ligation reaction.
5. Isothermal rolling circle amplification
NOTE: The Rolling circle amplification (RCA) can be performed using a commercial kit or with individually purchased components. Following the manufacturer's protocol will ensure a successful amplification. Kits typically contain a sample buffer, reaction buffer, and strand displacing polymerase, such as φ29 polymerase. Multiple reaction tubes can be combined to produce a large amount of DNA for cell-free expression (4 µg from 20 pg of starting material). The following protocol works efficiently.
6. Cell-free reaction
NOTE: Perform cell-free expression by combining energy buffer, extract, and RCA template. A typical cell-free reaction using the PANOx-SP energy buffer consists of 1.2 mM ATP, 0.85 mM each of GMP, UMP, and CMP, 30 mM phosphoenolpyruvate, 130 mM potassium glutamate, 10 mM ammonium glutamate, 12 mM magnesium glutamate, 1.5 mM spermidine, 1 mM putrescine, 34 µg/mL of folinic acid, 171 µg/mL of E. coli tRNA mixture, 2 mM each of 20 unlabeled amino acids, 0.33 mM NAD, 0.27 mM Coenzyme A (CoA), 4 mM potassium oxalate, 57 mM HEPES-KOH buffer (pH 7.5), 0.24% volume of the E. coli extract, and variable amounts of DNA23,49. The volume of reaction can vary but 15 µL reactions can save on reagent usage and are small enough for use in a 384 black-walled microplate49,50.
7. Subtilisin assay
NOTE: If expressing the subtilisin BPN' (SBT(n)) gene in Supplementary Sequence #2, follow this protocol to assay the activity.
Expression of sfGFP from RCA templates was comparable to that of the pJL1 plasmid when using only 0.30 µL of unpurified RCA DNA in a 15 µL reaction (Figure 2A). In fact, doubling and tripling the amount of template appears to offer no benefit in BL21 DE3 Star extract, suggesting already saturated levels of the template at 0.30 µL per reaction. Conversely, there appears to be a benefit to increasing the amount of RCA template when added to cell extract sourced from the SHuffle ...
The gene of interest can be any desired protein, but it is best to start with a fluorescent protein as a convenient reporter for real-time or end-point readout on a well plate reader for new adopters of this method. For new protein sequences, copy the amino acid sequence of the desired protein and paste it into the desired codon optimization tool61,62. There are usually many available organisms and strains of E. coli in the codon optimization tool, but c...
Nigel Reuel serves on the scientific advisory board of BigHat Biosciences Inc., a company that uses cell-free systems for the design of antibodies.
The authors acknowledge NIH 1R35GM138265-01 and NSF 2029532 for partial support of this project.
Name | Company | Catalog Number | Comments |
Alaline | Formedium | DOC0102 | |
Ammonium glutamate | MP Biomedicals | MP21805951 | |
Arginine | Formedium | DOC0106 | |
Asparagine | Formedium | DOC0114 | |
Aspartic Acid | Formedium | DOC0118 | |
ATP | Sigma | A2383 | |
Axygen Sealing Film | Corning | PCR-SP | |
CMP | Sigma | C1006 | |
Coenzyme A | Sigma | C3144 | |
CutSmart Buffer | NEB | B7204S | Provided with HindIII |
Cysteine | Formedium | DOC0122 | |
DNA Clean and Concentrator Kit | Zymo Research | D4004 | Used for purifying DNA |
dNTPs | NEB | N0447 | |
E. coli tRNA | Sigma (Roche) | 10109541001 | |
Folinic Acid | Sigma | 47612 | |
Gene Fragment | IDT | ||
Glutamic Acid | Formedium | DOC0134 | |
Glutamine | Formedium | DOC0130 | |
Glycine | Formedium | DOC0138 | |
GMP | Sigma | G8377 | |
HEPES | Sigma | H3375 | |
HindIII-HF | NEB | R3104L | |
Histidine | Formedium | DOC0142 | |
Isoleucine | Formedium | DOC0150 | |
Leucine | Formedium | DOC0154 | |
Lysine | Formedium | DOC0158 | |
Magnesium glutamate | Sigma | 49605 | |
Methionine | Formedium | DOC0166 | |
Microtiter Plate (384 well) | Greiner | 781906 | |
Microtiter Plate (96 well) | Greiner | 655809 | |
Multimode Plate Reader | BioTek | Synergy Neo2 | |
NAD | Sigma | N8535 | |
NanoPhotometer | Implen | NP80 | |
OneTaq DNA Polymerase | NEB | M0480 | |
PCR Tube | VWR | 20170-012 | |
Phenylalanine | Formedium | DOC0170 | |
Phosphoenolpyruvate | Sigma (Roche) | 10108294 | |
Potassium glutamate | Sigma | G1501 | |
Potassium oxalate | Fisher Scientific | P273 | |
Proline | Formedium | DOC0174 | |
Putrescine | Sigma | P5780 | |
Serine | Formedium | DOC0178 | |
Spermidine | Sigma | S0266 | |
T4 DNA Ligase | NEB | M0202S | |
T4 DNA Ligase Reaction Buffer | NEB | B0202S | Provided with T4 DNA Ligase |
TempliPhi Amplification Kit | Cytiva | 25640010 | Used for RCA |
Thermal Cycler | Biorad | C1000 Touch | |
Thermoblock | Eppendorf | ThermoMixer FP | |
Threonine | Formedium | DOC0182 | |
Tryptophan | Formedium | DOC0186 | |
Tyrosine | Formedium | DOC0190 | |
UMP | Sigma | U6375 | |
Valine | Formedium | DOC0194 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved