A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This work illustrates a standard procedure and threshold determination by the R-index to assess spatial lingual tactile sensitivity using a gratings orientation test.
Individual thresholds by R-index estimates are calculated using a gratings orientation test (6 different tools of increasing grating size from 0.20-1.25 mm) to assess spatial lingual tactile sensitivity. During the experiment, the subjects are blindfolded and asked to specify the orientation of the grating (either horizontal or vertical) placed on the tongue. R-index is based on Signal Detection Theory (SDT), and it is an estimated probability of correctly identifying a target stimulus (the signal, e.g., the correct orientation) compared to an alternative stimulus (the noise, e.g., the incorrect orientation). Once the R-index values for each subject and each tool dimension are calculated, it is possible to derive the individual threshold by interpolating the two R-indices immediately below and above the established cut-off (typically 75%) based on one-sided R-index critical values. This procedure can be helpful in the medical field to study the association between oral tactile sensitivity, speech clarity, and swallowing disorders, as well as in sensory and consumer studies to explore individual variation in texture perception, food preferences, and eating behavior.
The texture and mouthfeel of food play an important role in liking1,2,3,4, and while research has found differences in texture perception due to factors such as chewing behavior2,5, saliva flow, and composition6,7, there are limited methods available to assess variation in oral tactile receptors (mechanoreceptors). The oral cavity houses different types of mechanoreceptors found in the mouth: Merkel receptors, Ruffini cylinders, and Meissner corpuscles8. Mechanoreceptors can be classed into two groups: slowly adapting and rapidly adapting. Slowly adapting mechanoreceptors (Ruffini cylinders and Merkel receptors) produce signals continuously while being stimulated. In contrast, rapidly adapting mechanoreceptors (Meissner's corpuscles) respond to the beginning and end of stimulation with a signal. Tactile acuity varies widely across tongue surfaces and between individuals, possibly due to differences in mechanoreceptor sensitivity. The location and the number of mechanoreceptors in the oral cavity, the differences in the spatial arrangement/density of the mechanoreceptors (spatial acuity), or the differences in their sensitivity when activated could be the cause of this intra- and inter-individual variability. Several methods to evaluate and screen for variation in mechanoreceptor sensitivity in the oral cavity have been published, including von Frey filaments9,10, letter recognition11,12, grating orientation tests13, and flexible electrode array14,15. The gratings orientation test requires square gratings (Figure 1, Figure 2) with different groove widths to be placed on the tongue of a blindfolded subject. They indicate if subjects perceive the gratings to be in either a horizontal or vertical orientation. Responses are used to calculate average thresholds based on the subject's ability to discriminate the orientation for the different grating sizes.
An informed, written consent has been signed by all participants. This study was approved by the Ethics Committee of the University of Milan (n. 48/19) and conducted in accordance with the Declaration of Helsinki.
1. Training of experimenters
2. Assessment procedure
NOTE: Conduct the assessment of tactile acuity following the required health and safety standard to guarantee the subject's safety (e.g., mask, gloves, and lab coat).
3. Cleaning protocol
4. R-index calculation
5. Sensitivity and threshold determination by the R-index estimates
A total of 70 healthy adults (age range = 19-33 years; mean age = 22.0; 52.9% women) were involved in the study, as shown in Appiani et al. (2020)21.
As an example, the R-index distribution by age for square 0.75 mm is reported in Figure 4. Each point represents a different subject. Subjects above the dotted line (cut-off value: 0.7426) are those who correctly identify the orientation of the grating (more sensitive).
Few valid instruments are available for measuring tactile acuity10,11,13,22. Von Frey filaments have been shown to be an adequate method for measuring both skin and oral tactile acuity10,21,22. However, these instruments measure a different dimension of lingual tactile acuity than the gratings orientat...
The authors have nothing to disclose.
We acknowledge all the participants, volunteers, and others involved in the study. We are grateful to Sandra Stolzenbach Wæhrens and Wender Bredie (University of Copenhagen) for designing the squares used in the present gratings orientation test. This research was funded by the University of Milan, Piano di sostegno alla ricerca 2018.
Name | Company | Catalog Number | Comments |
Custom-made squares | University of Reading; University of Copenhagen | Squares of 1 cm2 from polytetrafluoroethylene (PTFE) | |
Disinfenctant solution (20% sodium hypochlorite) | Amuchina, Angelini S.p.A., Roma, Italy | ||
Eye masks | Various | ||
Gloves | Various | ||
Lab coat | Various | ||
Plastic cup for drinking water | Various | ||
Excel | Microsoft |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved