A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here, we describe a set of methods for characterizing the interaction of proteins with membranes of cells or microvesicles.
In the human body, most of the major physiologic reactions involved in the immune response and blood coagulation proceed on the membranes of cells. An important first step in any membrane-dependent reaction is binding of protein on the phospholipid membrane. An approach to studying protein interaction with lipid membranes has been developed using fluorescently labeled proteins and flow cytometry. This method allows the study of protein-membrane interactions using live cells and natural or artificial phospholipid vesicles. The advantage of this method is the simplicity and availability of reagents and equipment. In this method, proteins are labeled using fluorescent dyes. However, both self-made and commercially available, fluorescently labeled proteins can be used. After conjugation with a fluorescent dye, the proteins are incubated with a source of the phospholipid membrane (microvesicles or cells), and the samples are analyzed by flow cytometry. The obtained data can be used to calculate the kinetic constants and equilibrium Kd. In addition, it is possible to estimate the approximate number of protein binding sites on the phospholipid membrane using special calibration beads.
Biomembranes separate the inner contents of animal cells and extracellular space. Note that membranes also surround microvesicles formed during the cell's life cycle and organelles. The cell membrane is predominantly composed of lipids and proteins. Membrane proteins perform signaling, structural, transport, and adhesive functions. However, the lipid bilayer is also essential for the interrelation of the animal cell with the extracellular space. This paper proposes a method for studying the peripheral interaction of external proteins with the lipid membrane.
The most striking example of reactions occurring on the outer membrane layer of an animal cell is the blood coagulation reaction. An important feature of blood coagulation is that all the main reactions proceed on the phospholipid membranes of cells and microvesicles arising from these cells and not in the plasma1,2,3. Membrane-dependent reactions include the process of starting coagulation (on the cell membranes of the subendothelium, inflamed endothelium, or activated immune cells, with the participation of a tissue factor), all reactions of the main cascade-activation of factors IX, X, prothrombin; activation of factor XI by thrombin (on the membranes of activated platelets, erythrocytes, lipoproteins, and microvesicles); reactions of the protein C pathway; inactivation of coagulation enzymes (on the membranes of endothelial cells with the participation of thrombomodulin cofactors, endothelial protein C receptor, heparan sulfate); and contact pathway reactions (on membranes of platelets and some microvesicles with the participation of unknown cofactors). Thus, it is impossible to investigate blood coagulation without studying the interaction of various plasma proteins with the membrane of blood cells.
This paper describes a flow-cytometry-based method for characterizing the interaction of proteins with lipid membranes of cells or microvesicles. This approach was initially proposed to study the interaction of blood plasma with platelets and artificial phospholipid vesicles. Moreover, most of the studied proteins interact directly with negatively charged membrane phospholipids, particularly with phosphatidylserine4,5. Additionally, there are proteins whose interaction with the membrane is mediated by special receptors6.
An important ability of flow cytometry is discriminating between free and bound ligands without additional separation. This feature of cytometry allows the study of ligand equilibrium binding at the endpoint and helps perform continuous kinetic measurements. The technique is unsophisticated and does not require complex sample preparation. Flow cytometry is actively used to quantitatively study the dynamics of interaction between fluorescent peptides, receptors, and G-proteins in intact and detergent-permeable neutrophils7. This approach is also applicable for exploring protein-DNA interactions and the kinetics of endonuclease activity in real time8. Over time, this method was used to quantitatively study high-affinity protein-protein interactions with purified lipid vesicles9, or, more generally, with membrane proteins expressed in a highly efficient Sf9 cell expression system10. Quantitative methods have also been described for characterizing protein-liposome interactions using flow cytometry for transmembrane proteins11.
This technique uses self-made calibration beads to avoid using commercially available beads7. The calibration beads used previously7 were intended to work with fluorescein, which substantively restricted the assortment of accessible fluorescent ligands on the proteins. In addition, this paper offers a new way to acquire and analyze kinetic data for reasonable time resolution. Although this method is described for artificial phospholipid vesicles, there are no obvious limitations for its adaptability to cells, natural vesicles, or artificial phospholipid vesicles with a different lipid composition. The method described herein allows the estimation of the parameters of interaction (kon, koff) and equilibrium (Kd) and facilitates quantitative characterization of the number of protein binding sites on the membrane. Note that this technique provides an approximate estimate of the number of binding sites. The advantages of the method are its relative simplicity, accessibility, and adaptability to native cells and natural and artificial microvesicles.
1. Fluorescent protein labeling
2. Preparation of phospholipid vesicles
3. Isolation of platelets from whole blood
4. Detection of protein - lipid interaction by flow cytometry
5. Analysis of flow cytometry data
6. Converting fluorescence intensity to the mean number of binding sites
The flow cytometry method described herein is used to characterize the binding of plasma coagulation proteins to activated platelets. In addition, phospholipid vesicles PS:PC 20:80 were applied as a model system. This paper mainly focuses on artificial phospholipid vesicles as an example. The parameters of the cytometer, in particular, the photomultiplier tube (PMT) voltage and the compensation must be selected for each specific device, the object of study (cells, artificial or natural microvesicles), and the dyes used. ...
The proposed method can be adapted for a rough characterization of the interaction of proteins with phospholipid membranes from various sources and compositions. The quantitative flow cytometry described here concedes to surface plasmon resonance (SPR) in several parameters. In particular, it has a lower sensitivity and time resolution and requires fluorescent labeling of proteins. Fluorescent labeling can lead to a change in conformation and loss of activity for many proteins and therefore requires careful control. Howe...
The authors have no conflicts of interest to disclose.
The authors were supported by a Russian Science Foundation grant 20-74-00133.
Name | Company | Catalog Number | Comments |
A23187 | Sigma Aldrich | C7522-10MG | |
Alexa Fluor 647 NHS Ester (Succinimidyl Ester) | Thermo Fisher Scientific | A37573 | fluorescent dye |
Apyrase from potatoes | Sigma Aldrich | A2230 | |
BD FACSCantoII | BD Bioscience | ||
bovine serum albumin | VWR Life Science AMRESCO | Am-O332-0.1 | |
Calcium chloride, anhydrous, powder, ≥97% | Sigma Aldrich | C4901-100G | |
Cary Eclipse Fluorescence Spectrometer | Agilent | ||
D-(+)-Glucose | Sigma Aldrich | G7528-1KG | |
DiIC16(3) (1,1'-Dihexadecyl-3,3,3',3'-Tetramethylindocarbocyanine Perchlorate) | Thermo Fisher Scientific | D384 | |
DMSO | Sigma Aldrich | D8418 | |
EDTA disodium salt | VWR Life Science AMRESCO | Am-O105B-0.1 | |
FACSDiva | BD Bioscience | cytometry data acquisition software | |
FlowJo | Tree Star | cytometer software for data analysis | |
HEPES | Sigma Aldrich | H4034-500G | |
Human Factor X | Enzyme research | HFX 1010 | |
Hydroxylamine hydrochloride | Panreac | 141914.1209 | |
L-α-phosphatidylcholine (Brain, Porcine) | Avanti Polar Lipids | 840053P | |
L-α-phosphatidylserine (Brain, Porcine) (sodium salt) | Avanti Polar Lipids | 840032P | |
Magnesium chloride | Sigma Aldrich | M8266-100G | |
Mini-Extruder | Avanti Polar Lipids | 610020-1EA | |
OriginPro 8 SR4 v8.0951 | OriginLab Corporation | Statistical software | |
Phosphate Buffered Saline (PBS) Tablets, Biotechnology Grade | VWR Life Science AMRESCO | 97062-732 | |
Potassium chloride | Sigma Aldrich | P9541-500G | |
Prostaglandin E1 | Cayman Chemical | 13010 | |
Sephadex G25 | GE Healthcare | GE17-0033-01 | gel filtration medium for protein purification |
Sepharose CL-2B | Sigma Aldrich | CL2B300-500ML | gel filtration medium for platelet purification |
Sodium bicarbonate | Corning | 61-065-RO | |
Sodium chloride | Sigma Aldrich | S3014-500G | |
Sodium phosphate monobasic | Sigma Aldrich | S3139-250G | |
Spin collumns with membrane 0.2 µm | Sartorius | VS0171 | |
Trisodium citrate dihydrate | Sigma Aldrich | S1804-1KG |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved