Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The development of a heterojunction boosts the photocatalytic activities of solution combustion synthesis, which is a time-/energy-efficient process. Advanced analytical characterization techniques were used in this protocol to evaluate the materials' characteristics, and nanocomposites demonstrated improved acid orange-8 dye degradation.

Abstract

There is a significant global demand for improvements in synthesis techniques and their optimal characteristics, especially for industrial-scale applications. Sol-gel-based solution combustion synthesis (SG-SCS) is a simple method to produce ordered porous materials. In this regard, Pearson's hard and soft acids and bases theory assists in selecting host-dopant reactivity to form a proper heterojunction.

The formation of a heterojunction also changes the essential properties of the materials, improving photocatalysis via charge transfer or synergistic activities. A calcination temperature of 500 °C is ideal for this process based on the results of the stability assessment via a differential thermogravimetry ratio analysis (DTG).

The nanoscale dimensions of the nanoparticles (NPs) and nanocomposites (NCs) generated were validated using X-ray diffraction and high-resolution transmission electron microscopy (HRTEM). Furthermore, the scanning electron microscopy micrographs and BET analyses confirmed the porosity nature of the materials. HRTEM, X-ray photoelectron spectroscopy, and energy-dispersive X-ray investigations established the materials composition. The study found that NCs degraded the acid orange 8 (AO8) color more efficiently than bare ZnO.

Introduction

Environmental protection has become a major concern with the rapid rise in companies worldwide. Consequently, nanotechnology-based nanomaterials (NMs) and their synthesis have attracted researchers' attention over bulk materials in the modern scientific world1. Several physicochemical approaches have been adapted to treat organic and inorganic contaminants2,3. In this regard, due to its simplicity and capability of dissolving toxins without creating secondary contamination, heterogeneous photocatalysis is regarded as an adaptive remediation technique4. Studie....

Protocol

1. Nanomaterial synthesis

  1. ZnO-Mn2O3 nanocomposite synthesis
    1. Synthesize nanocomposites using poly-vinyl alcohol as surfactant and a complexing agent-assisted SG-SCS approach. For a graphical illustration of the SG-SCS approach, see Supplementary Figure S1.
    2. Dissolve 1.5 g of PVA polymer in 100 mL of distilled water with continuous stirring on a magnetic stirrer for about 15 min at 115 °C23.
    3. Pou.......

Representative Results

Figure 1A depicts the thermal stabilities of binary NCs before a DTG instrument analyzes calcination in the N2 atmosphere. A sequence of vaporization of adsorbed H2O molecules, intramolecular decay, metal hydroxides or/and PVA side-chain decomposition, intermolecular/PVA main chain decomposition, and finally, the crystalline part took place to give carbon, hydrocarbons, and ash29,30.

.......

Discussion

The present protocol describes the synthesis of nanocrystals using a bottom-up strategy with precise shape, size, and structure. The study observed that the nucleation and growth of nanocrystals were significant before forming the nanocrystals. Here, the ZnO and manganese oxides were synthesized based on LaMer's group theory25, which postulates the process of nanocrystal formation after reducing precursors into atoms and nuclei, leading to seed formation to produce nanocrystals. In this regard.......

Acknowledgements

We would like to acknowledge Adama Science and Technology University for their support in this work. Funding was provided from Taif University Researchers Supporting Project number (TURSP-2020/44), Taif University, Taif, Saudi Arabia.

....

Materials

NameCompanyCatalog NumberComments
Acid orange 8Sigma-Aldrich65%,
ChlorineSigma-Aldrich7782-50-5
DithienogermoleSigma-Aldrich773881-43-9
HClSigma-Aldrich7647-01-0
Manganese nitrate (10%) saltSigma-Aldrich15710-66-410%
Manganese sulfate monohydrateSigma-AldrichDensity: 2.95 g/cm³; solubility in water: 70 g/100 mL (70 °C); 99.95%,  MnSO4.H2O
Poly (vinyl alcohol)Sigma-Aldrich9002-89-5Density: 1.19–1.31 g/cm³ @20 °C, soluble in water only @ > 80 °C
Zinc nitrate hexahydrate (90%)Sigma-Aldrich10196-18-698%; Density: 2.065 g/cm³ @20 °C; solubility in water: 184.3 g/100 mL @20 °C
Instruments used
Materials nameModelAnalysis
BET (N2 adsorption-desorption isotherms)Quanta chrome instrument.Textural properties
DT/DTAShimadzu DTG-60HMeasure thermal stability
FTIRPerkin Elmer FT-IR, Spectrum 65Chemical bonding information
HRTEMJEOL TEM 2100 HRTEMMorphological, size, and composition analysis
SEM-EDXSEM-EDX-EVO 18 with low vacuum facility and ALTO 1000 cryo attachmentMorphological analysis
XPSAXIS ULTRA from AXIS 165
XRDShimadzu, XRD-7000Crystallinity, structure, and approximate average crystallite size
Common software used
NameCompanyUse
MendeleyMendeley-Desktop-1.19.8-win32For citing references
OriginOriginPro 8XRD, BET, UV-vis-DRS data analysis

References

  1. Khort, A., et al. Corrosion and transformation of solution combustion synthesized Co, Ni and CoNi nanoparticles in synthetic freshwater with and without natural organic matter. Scientific Reports. 11 (1), 7860 (2021).
  2. Pype, M., Lawrence, M. G., Keller, J., Gernjak, W.

Explore More Articles

HeterojunctionPhotocatalytic ActivitiesSol gel based Solution Combustion SynthesisPearson s Hard And Soft Acids And Bases TheoryCalcination TemperatureNanoparticlesNanocompositesX ray DiffractionTransmission Electron MicroscopyScanning Electron MicroscopyBET AnalysisX ray Photoelectron SpectroscopyEnergy dispersive X rayAcid Orange 8

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved