A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we present a simplified open-source hardware and software setup for investigating mouse spatial learning using virtual reality (VR). This system displays a virtual linear track to a head-restrained mouse running on a wheel by utilizing a network of microcontrollers and a single-board computer running an easy-to-use Python graphical software package.
Head-restrained behavioral experiments in mice allow neuroscientists to observe neural circuit activity with high-resolution electrophysiological and optical imaging tools while delivering precise sensory stimuli to a behaving animal. Recently, human and rodent studies using virtual reality (VR) environments have shown VR to be an important tool for uncovering the neural mechanisms underlying spatial learning in the hippocampus and cortex, due to the extremely precise control over parameters such as spatial and contextual cues. Setting up virtual environments for rodent spatial behaviors can, however, be costly and require an extensive background in engineering and computer programming. Here, we present a simple yet powerful system based upon inexpensive, modular, open-source hardware and software that enables researchers to study spatial learning in head-restrained mice using a VR environment. This system uses coupled microcontrollers to measure locomotion and deliver behavioral stimuli while head-restrained mice run on a wheel in concert with a virtual linear track environment rendered by a graphical software package running on a single-board computer. The emphasis on distributed processing allows researchers to design flexible, modular systems to elicit and measure complex spatial behaviors in mice in order to determine the connection between neural circuit activity and spatial learning in the mammalian brain.
Spatial navigation is an ethologically important behavior by which animals encode the features of new locations into a cognitive map, which is used for finding areas of possible reward and avoiding areas of potential danger. Inextricably linked with memory, the cognitive processes underlying spatial navigation share a neural substrate in the hippocampus1 and cortex, where neural circuits in these areas integrate incoming information and form cognitive maps of environments and events for later recall2. While the discovery of place cells in the hippocampus3,4 and g....
All procedures in this protocol were approved by the Institutional Animal Care and Use Committee of the New York State Psychiatric Institute.
NOTE: A single-board computer is used to display a VR visual environment coordinated with the running of a head-restrained mouse on a wheel. Movement information is received as serial input from an ESP32 microcontroller reading a rotary encoder coupled to the wheel axle. The VR environment is rendered using OpenGL hardware acceleration on the Raspberry P.......
This open-source virtual reality behavioral setup allowed us to quantify licking behavior as a read-out of spatial learning as head-restrained mice navigated a virtual linear track environment. Seven C57BL/6 mice of both sexes at 4 months of age were placed on a restricted water schedule and first trained to lick continuously at low levels while running on the wheel for random spatial rewards ("random foraging") without VR. Although their performance was initially affected when moved to the VR projection screen s.......
This open-source VR system for mice will only function if the serial connections are made properly between the rotary and behavior ESP32 microcontrollers and the single-board computer (step 2), which can be confirmed using the IDE serial monitor (step 2.4.5). For successful behavioral results from this protocol (step 4), the mice must be habituated to the apparatus and be comfortable running on the wheel for liquid rewards (steps 4.3-4.5). This requires sufficient (but not excessive) water restriction, as mice given .......
We would like to thank Noah Pettit from the Harvey lab for the discussion and suggestions while developing the protocol in this manuscript. This work was supported by a BBRF Young Investigator Award and NIMH 1R21MH122965 (G.F.T.), in addition to NINDS R56NS128177 (R.H., C.L.) and NIMH R01MH068542 (R.H.).
....Name | Company | Catalog Number | Comments |
1/4 " diam aluminum rod | McMaster-Carr | 9062K26 | 3" in length for wheel axle |
1/4"-20 cap screws, 3/4" long (x2) | Amazon.com | B09ZNMR41V | for affixing head post holders to optical posts |
2"x7" T-slotted aluminum bar (x2) | 8020.net | 1020 | wheel/animal mounting frame |
6" diam, 3" wide acrylic cylinder (1/8" thick) | Canal Plastics | 33210090702 | Running wheel (custom width cut at canalplastics.com) |
8-32 x 1/2" socket head screws | McMaster-Carr | 92196A194 | fastening head post holder to optical post |
Adjustable arm (14") | Amazon.com | B087BZGKSL | to hold/adjust lick spout |
Analysis code (MATLAB) | custom written | file at github.com/GergelyTuri/HallPassVR/software/Analysis code | |
Axle mounting flange, 1/4" ID | Pololu | 1993 | for mounting wheel to axle |
Ball bearing (5/8" OD, 1/4" ID, x2) | McMaster-Carr | 57155K324 | for mounting wheel axle to frame |
Behavior ESP32 code | custom written | file at github.com/GergelyTuri/HallPassVR/software/Arduino code/Behavior board | |
Black opaque matte acrylic sheets (1/4" thick) | Canal Plastics | 32918353422 | laser cut file at github.com/GergelyTuri/HallPassVR/hardware/VR screen assembly |
Clear acrylic sheet (1/4" thick) | Canal Plastics | 32920770574 | laser cut file at github.com/GergelyTuri/HallPassVR/hardware/VR wheel assembly |
ESP32 devKitC v4 (x2) | Amazon.com | B086YS4Z3F | microcontroller for behavior and rotary encoder |
ESP32 shield | OpenMaze.org | OMwSmall | description at www.openmaze.org (https://claylacefield.wixsite.com/openmazehome/copy-of-om2shield). ZIP gerber files at: https://github.com/claylacefield/OpenMaze/tree/master/OM_PCBs |
Fasteners and brackets | 8020.net | 4138, 3382,3280 | for wheel frame mounts |
goniometers | Edmund Optics | 66-526, 66-527 | optional for behavior. Fine tuning head for imaging |
HallPassVR python code | custom written | file at github.com/GergelyTuri/HallPassVR/software/HallPassVR | |
Head post holder | custom design | 3D design file at github.com/GergelyTuri/HallPassVR/hardware/VR head mount/Headpost Clamp | |
LED projector | Texas Instruments | DLPDLCR230NPEVM | or other small LED projector |
Lick spout | VWR | 20068-638 | (or ~16 G metal hypodermic tubing) |
M 2.5 x 6 set screws | McMaster-Carr | 92015A097 | securing head post |
Matte white diffusion paper | Amazon.com | screen material | |
Metal headposts | custom design | 3D design file at github.com/GergelyTuri/HallPassVR/hardware/VR head mount/head post designs | |
Miscellenous tubing and tubing adapters (1/16" ID) | for constructing the water line | ||
Optical breadboard | Thorlabs | as per user's requirements | |
Optical posts, 1/2" diam (2x) | Thorlabs | TR4 | for head fixation setup |
Processing code | custom written | file at github.com/GergelyTuri/HallPassVR/software/Processing code | |
Raspberry Pi 4B | raspberry.com, adafruit.com | Single-board computer for rendering of HallPassVR envir. | |
Right angle clamp | Thorlabs | RA90 | for head fixation setup |
Rotary encoder (quadrature, 256 step) | DigiKey | ENS1J-B28-L00256L | to measure wheel rotation |
Rotary encoder ESP32 code | custom written | file at github.com/GergelyTuri/HallPassVR/software/Arduino code/Rotary encoder | |
SCIGRIP 10315 acrylic cement | Amazon.com | ||
Shaft coupler | McMaster-Carr | 9861T426 | to couple rotary encoder shaft with axle |
Silver mirror acrylic sheets | Canal Plastics | 32913817934 | laser cut file at github.com/GergelyTuri/HallPassVR/hardware/VR screen assembly |
Solenoid valve | Parker | 003-0137-900 | to administer water rewards |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved