Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a simplified open-source hardware and software setup for investigating mouse spatial learning using virtual reality (VR). This system displays a virtual linear track to a head-restrained mouse running on a wheel by utilizing a network of microcontrollers and a single-board computer running an easy-to-use Python graphical software package.

Abstract

Head-restrained behavioral experiments in mice allow neuroscientists to observe neural circuit activity with high-resolution electrophysiological and optical imaging tools while delivering precise sensory stimuli to a behaving animal. Recently, human and rodent studies using virtual reality (VR) environments have shown VR to be an important tool for uncovering the neural mechanisms underlying spatial learning in the hippocampus and cortex, due to the extremely precise control over parameters such as spatial and contextual cues. Setting up virtual environments for rodent spatial behaviors can, however, be costly and require an extensive background in engineering and computer programming. Here, we present a simple yet powerful system based upon inexpensive, modular, open-source hardware and software that enables researchers to study spatial learning in head-restrained mice using a VR environment. This system uses coupled microcontrollers to measure locomotion and deliver behavioral stimuli while head-restrained mice run on a wheel in concert with a virtual linear track environment rendered by a graphical software package running on a single-board computer. The emphasis on distributed processing allows researchers to design flexible, modular systems to elicit and measure complex spatial behaviors in mice in order to determine the connection between neural circuit activity and spatial learning in the mammalian brain.

Introduction

Spatial navigation is an ethologically important behavior by which animals encode the features of new locations into a cognitive map, which is used for finding areas of possible reward and avoiding areas of potential danger. Inextricably linked with memory, the cognitive processes underlying spatial navigation share a neural substrate in the hippocampus1 and cortex, where neural circuits in these areas integrate incoming information and form cognitive maps of environments and events for later recall2. While the discovery of place cells in the hippocampus3,4 and g....

Protocol

All procedures in this protocol were approved by the Institutional Animal Care and Use Committee of the New York State Psychiatric Institute.

NOTE: A single-board computer is used to display a VR visual environment coordinated with the running of a head-restrained mouse on a wheel. Movement information is received as serial input from an ESP32 microcontroller reading a rotary encoder coupled to the wheel axle. The VR environment is rendered using OpenGL hardware acceleration on the Raspberry P.......

Representative Results

This open-source virtual reality behavioral setup allowed us to quantify licking behavior as a read-out of spatial learning as head-restrained mice navigated a virtual linear track environment. Seven C57BL/6 mice of both sexes at 4 months of age were placed on a restricted water schedule and first trained to lick continuously at low levels while running on the wheel for random spatial rewards ("random foraging") without VR. Although their performance was initially affected when moved to the VR projection screen s.......

Discussion

This open-source VR system for mice will only function if the serial connections are made properly between the rotary and behavior ESP32 microcontrollers and the single-board computer (step 2), which can be confirmed using the IDE serial monitor (step 2.4.5). For successful behavioral results from this protocol (step 4), the mice must be habituated to the apparatus and be comfortable running on the wheel for liquid rewards (steps 4.3-4.5). This requires sufficient (but not excessive) water restriction, as mice given .......

Acknowledgements

We would like to thank Noah Pettit from the Harvey lab for the discussion and suggestions while developing the protocol in this manuscript. This work was supported by a BBRF Young Investigator Award and NIMH 1R21MH122965 (G.F.T.), in addition to NINDS R56NS128177 (R.H., C.L.) and NIMH R01MH068542 (R.H.).

....

Materials

NameCompanyCatalog NumberComments
1/4 " diam aluminum rodMcMaster-Carr9062K263" in length for wheel axle
1/4"-20 cap screws, 3/4" long (x2)Amazon.comB09ZNMR41Vfor affixing head post holders to optical posts
2"x7" T-slotted aluminum bar (x2)8020.net1020wheel/animal mounting frame
6" diam, 3" wide acrylic cylinder (1/8" thick)Canal Plastics33210090702Running wheel (custom width cut at canalplastics.com)
8-32 x 1/2" socket head screwsMcMaster-Carr92196A194fastening head post holder to optical post 
Adjustable arm (14")Amazon.comB087BZGKSLto hold/adjust lick spout
Analysis code (MATLAB)custom writtenfile at github.com/GergelyTuri/HallPassVR/software/Analysis code
Axle mounting flange, 1/4" IDPololu1993for mounting wheel to axle
Ball bearing (5/8" OD, 1/4" ID, x2)McMaster-Carr57155K324for mounting wheel axle to frame
Behavior ESP32 codecustom writtenfile at github.com/GergelyTuri/HallPassVR/software/Arduino code/Behavior board
Black opaque matte acrylic sheets (1/4" thick)Canal Plastics32918353422laser cut file at github.com/GergelyTuri/HallPassVR/hardware/VR screen assembly
Clear acrylic sheet (1/4" thick)Canal Plastics32920770574laser cut file at github.com/GergelyTuri/HallPassVR/hardware/VR wheel assembly
ESP32 devKitC v4 (x2)Amazon.comB086YS4Z3Fmicrocontroller for behavior and rotary encoder
ESP32 shieldOpenMaze.orgOMwSmalldescription at www.openmaze.org (https://claylacefield.wixsite.com/openmazehome/copy-of-om2shield). ZIP gerber files at: https://github.com/claylacefield/OpenMaze/tree/master/OM_PCBs
Fasteners and brackets 8020.net4138, 3382,3280for wheel frame mounts
goniometersEdmund Optics66-526, 66-527optional for behavior. Fine tuning head for imaging
HallPassVR python codecustom writtenfile at github.com/GergelyTuri/HallPassVR/software/HallPassVR
Head post holdercustom design3D design file at github.com/GergelyTuri/HallPassVR/hardware/VR head mount/Headpost Clamp
LED projectorTexas InstrumentsDLPDLCR230NPEVMor other small LED projector
Lick spoutVWR20068-638(or ~16 G metal hypodermic tubing)
M 2.5 x 6 set screwsMcMaster-Carr92015A097securing head post 
Matte white diffusion paperAmazon.comscreen material
Metal headpostscustom design3D design file at github.com/GergelyTuri/HallPassVR/hardware/VR head mount/head post designs
Miscellenous tubing and tubing adapters (1/16" ID)for constructing the water line
Optical breadboardThorlabsas per user's requirements
Optical posts, 1/2" diam (2x)ThorlabsTR4for head fixation setup
Processing codecustom writtenfile at github.com/GergelyTuri/HallPassVR/software/Processing code
Raspberry Pi 4Braspberry.com, adafruit.comSingle-board computer for rendering of HallPassVR envir.
Right angle clampThorlabsRA90for head fixation setup
Rotary encoder (quadrature, 256 step)DigiKeyENS1J-B28-L00256Lto measure wheel rotation
Rotary encoder ESP32 codecustom writtenfile at github.com/GergelyTuri/HallPassVR/software/Arduino code/Rotary encoder
SCIGRIP 10315 acrylic cementAmazon.com
Shaft couplerMcMaster-Carr9861T426to couple rotary encoder shaft with axle
Silver mirror acrylic sheetsCanal Plastics32913817934laser cut file at github.com/GergelyTuri/HallPassVR/hardware/VR screen assembly
Solenoid valveParker003-0137-900to administer water rewards

References

  1. Lisman, J., et al. Viewpoints: How the hippocampus contributes to memory, navigation and cognition. Nature Neuroscience. 20 (11), 1434-1447 (2017).
  2. Buzsaki, G., Moser, E. I. Memory, navigation and the....

Explore More Articles

Virtual RealitySpatial LearningHead restrained MiceOpen source SystemModular Electronic SetupRotary EncoderESP32Serial CommunicationSolenoid ValveLick PortSingle Board ComputerGPUProjection Screen

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved