A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Materials
  • References
  • Reprints and Permissions

Summary

Described here is a stepwise method of combining Fiber Optic RealShape technology and intravascular ultrasound to show the potential of merging both techniques, in view of the reduction of radiation exposure and improvement of navigation tasks and treatment success during an endovascular procedure for the treatment of peripheral arterial disease.

Abstract

Vascular surgeons and interventional radiologists face chronic exposure to low-dose radiation during endovascular procedures, which may impact their health in the long term due to their stochastic effects. The presented case shows the feasibility and efficacy of combining Fiber Optic RealShape (FORS) technology and intravascular ultrasound (IVUS) to reduce operator exposure during the endovascular treatment of obstructive peripheral arterial disease (PAD).

FORS technology enables real-time, three-dimensional visualization of the full shape of guidewires and catheters, embedded with optical fibers that use laser light instead of fluoroscopy. Hereby, radiation exposure is reduced, and spatial perception is improved while navigating during endovascular procedures. IVUS has the capacity to optimally define vessel dimensions. Combining FORS and IVUS in a patient with iliac in-stent restenosis, as shown in this case report, enables passage of the stenosis and pre- and post-percutaneous transluminal angioplasty (PTA) plaque assessment (diameter improvement and morphology), with a minimum dose of radiation and zero contrast agent. The aim of this article is to describe the method of combining FORS and IVUS stepwise, to show the potential of merging both techniques in view of reducing radiation exposure and improving navigation tasks and treatment success during the endovascular procedure for the treatment of PAD.

Introduction

Peripheral arterial disease (PAD) is a progressive disease caused by arterial narrowing (stenosis and/or occlusions) and results in reduced blood flow toward the lower extremities. The global prevalence of PAD in the population aged 25 and over was 5.6% in 2015, indicating that about 236 million adults live with PAD worldwide1,2. As the prevalence of PAD increases with age, the number of patients will only increase in the coming years3. In recent decades, there has been a major shift from open to endovascular treatment for PAD. Treatment strategies can include plain old balloon angiopla....

Protocol

The University Medical Center Utrecht Medical Ethics Committee approved the study protocol (METC 18/422), and the patient provided informed consent for the procedure and protocol.

1. Patient screening

  1. Patient inclusion
    1. Ensure that the patient is >18 years old.
    2. Ensure that the patient is symptomatic for PAD and/or ISR.
  2. Patient exclusion
    1. Exclude patients who cannot provide informed consent due to a language barrier or lack of comprehension.

2. Vessel segmentation

  1. For vessel s....

Results

The protocol used for the presented case shows the feasibility of combining the FORS technique and IVUS, with the aim to decrease radiation exposure and contrast usage in an endovascular procedure for PAD. The majority of the procedure is performed without X-ray, and zero contrast is used. Passage through the lesion is performed by using FORS (guidewire and catheter) technology. The steps in which the X-ray is used are described in the protocol; four fluoroscopic images (needed for volume and shape registration), changin.......

Discussion

To our knowledge, this case report is the first to discuss the combination of FORS and IVUS to limit radiation exposure and exclude the use of a contrast agent during endovascular intervention for PAD. The combination of both techniques during the treatment of this specific lesion seems to be safe and feasible. Furthermore, the combination of FORS and IVUS makes it possible to limit radiation exposure (AK = 28.4 mGy; DAP = 7.87 Gy*cm2) and eliminates the use of contrast agents during the procedure. The present.......

Disclosures

Philips Medical Systems Netherlands B.V. provided a research grant according to fair market value to the Division of Surgical Specialties of the University Medical Center Utrecht to support the FORS Learn registry. The Division of Surgical specialties of the University Medical Center Utrecht has a research and consultancy agreement with Philips.

Materials

NameCompanyCatalog NumberComments
AltaTrack Catheter BerensteinPhilips Medical Systems Nederland B.V., Best, NetherlandsATC55080BRN
AltaTrack Docking topPhilips Medical Systems Nederland B.V., Best, Netherlands
AltaTrack GuidewirePhilips Medical Systems Nederland B.V., Best, NetherlandsATG35120A
AltaTrack TrolleyPhilips Medical Systems Nederland B.V., Best, Netherlands
Armada 8x40mm PTA balloonAbbott laboratories, Illinois, United StatesB2080-40
Azurion X-ray systemPhilips Medical Systems Nederland B.V, Best, Netherlands
Core M2 vascular systemPhilips Medical Systems Nederland B.V., Best, Netherlands400-0100.17
Hi-Torque Command guidewireAbbott laboratories, Illinois, United States2078175
Perclose ProglideAbbott laboratories, Illinois, United States12673-03
Rosen 0.035 stainless steel guidewireCook Medical, Indiana, United StatesTHSCF-35-180-1.5-ROSEN
Visions PV .014P RX catheterPhilips Medical Systems Nederland B.V., Best, Netherlands014R

References

  1. Song, P., et al. national prevalence and risk factors for peripheral artery disease in 2015: an updated systematic review and analysis. The Lancet. Global Health. 7 (8), e1020-1030 (2019).
  2. Aday, A. W., Matsushita, K.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Endovascular TreatmentPeripheral Arterial DiseaseFiber Optic RealShapeFORSIntravascular UltrasoundIVUSRadiation ExposureFluoroscopyDigital Subtraction AngiographyDSA3D VisualizationDevice NavigationHemodynamicsContrast Material Reduction

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved