Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
L’objectif de cette étude est de développer un nouveau modèle numérique 3D des nodules pulmonaires qui sert de pont de communication entre les médecins et les patients et constitue également un outil de pointe pour le prédiagnostic et l’évaluation pronostique.
La reconstruction tridimensionnelle (3D) des nodules pulmonaires à l’aide d’images médicales a introduit de nouvelles approches techniques pour le diagnostic et le traitement des nodules pulmonaires, et ces approches sont progressivement reconnues et adoptées par les médecins et les patients. Néanmoins, la construction d’un modèle numérique 3D relativement universel des nodules pulmonaires pour le diagnostic et le traitement est difficile en raison des différences entre dispositifs, des temps de prise de vue et des types de nodules. L’objectif de cette étude est de proposer un nouveau modèle numérique 3D des nodules pulmonaires qui sert de pont entre les médecins et les patients et constitue également un outil de pointe pour le prédiagnostic et l’évaluation pronostique. De nombreuses méthodes de détection et de reconnaissance des nodules pulmonaires pilotées par l’IA utilisent des techniques d’apprentissage profond pour capturer les caractéristiques radiologiques des nodules pulmonaires, et ces méthodes peuvent atteindre une bonne performance sous la courbe (ASC). Cependant, les faux positifs et les faux négatifs demeurent un défi pour les radiologistes et les cliniciens. L’interprétation et l’expression des caractéristiques du point de vue de la classification et de l’examen des nodules pulmonaires ne sont toujours pas satisfaisantes. Dans cette étude, une méthode de reconstruction 3D continue de l’ensemble du poumon en position horizontale et coronale est proposée en combinant les technologies de traitement d’images médicales existantes. Par rapport à d’autres méthodes applicables, cette méthode permet aux utilisateurs de localiser rapidement les nodules pulmonaires et d’identifier leurs propriétés fondamentales tout en observant les nodules pulmonaires sous de multiples perspectives, fournissant ainsi un outil clinique plus efficace pour diagnostiquer et traiter les nodules pulmonaires.
L’incidence globale des nodules pulmonaires est variable, mais on estime généralement qu’environ 30% des adultes ont au moins un nodule pulmonaire visible sur les radiographies pulmonaires1. L’incidence des nodules pulmonaires est plus élevée dans des populations spécifiques, telles que les gros fumeurs et ceux ayant des antécédents de cancer du poumon ou d’autres maladies pulmonaires. Il est important de noter que tous les nodules pulmonaires ne sont pas malins, mais une évaluation approfondie est nécessaire pour exclure la malignité2. La détection et le diagnostic précoces du cancer du poumon sont cruciaux pour améliorer les taux de survie, et un dépistage régulier par tomodensitométrie à faible dose (TDMD) est recommandé pour les personnes à haut risque. De nombreuses méthodes de détection et de reconnaissance des nodules pulmonairespilotées par l’IA 3,4,5,6,7 utilisent des techniques d’apprentissage profond pour capturer les caractéristiques radiologiques des nodules pulmonaires, et ces méthodes peuvent atteindre de bonnes performances d’aire sous la courbe (ASC). Cependant, les faux positifs et les faux négatifs demeurent un défi pour les radiologistes et les cliniciens. L’interprétation et l’expression des caractéristiques du point de vue de la classification et de l’examen des nodules pulmonaires ne sont toujours pas satisfaisantes. Dans le même temps, la reconstruction 3D de nodules pulmonaires à partir du TDM LDM a suscité une attention croissante en tant que modèle numérique pour divers types de nodules.
La reconstruction 3D des nodules pulmonaires est un processus qui génère une représentation 3D d’une petite croissance ou d’une bosse dans le poumon. Ce processus implique généralement l’application de techniques d’analyse d’images médicales qui tirent parti à la fois de l’expertise médicale et des approches d’intelligence des données. Le modèle numérique 3D qui en résulte offre une représentation plus détaillée et plus précise du nodule, permettant une visualisation et une analyse améliorées de sa taille, de sa forme et de sa relation spatiale avec les tissus pulmonaires environnants 8,9,10,11,12. Ces informations peuvent aider au diagnostic et à la surveillance des nodules pulmonaires, en particulier ceux soupçonnés d’être cancéreux. En facilitant une analyse plus précise, la reconstruction 3D des nodules pulmonaires a le potentiel d’améliorer la précision du diagnostic et d’éclairer les décisions de traitement.
La projection d’intensité maximale (MIP) est une technique populaire dans le domaine de la reconstruction 3D des nodules pulmonaires et est utilisée pour créer une projection 2D d’une image 3D 8,9,10,11,12 Elle est particulièrement utile dans la visualisation de données volumétriques extraites de fichiers DICOM (Digital Imaging and Communications in Medicine) scannés par CT. La technique MIP fonctionne en sélectionnant les voxels (les plus petites unités de données de volume 3D) avec l’intensité la plus élevée le long de la direction de visualisation et en les projetant sur un plan 2D. Il en résulte une image 2D qui met l’accent sur les structures ayant la plus grande intensité et supprime celles ayant une intensité plus faible, ce qui facilite l’identification et l’analyse des caractéristiques pertinentes 9,10,11,12. Cependant, MIP n’est pas sans limites. Par exemple, le processus de projection peut entraîner une perte d’informations et l’image 2D résultante peut ne pas représenter avec précision la structure 3D de l’objet sous-jacent. Néanmoins, la MIP reste un outil précieux pour l’imagerie médicale et la visualisation, et son utilisation continue d’évoluer avec les progrès de la technologie et de la puissance de calcul11.
Dans cette étude, un modèle MIP successif pour visualiser les nodules pulmonaires est développé qui est facile à utiliser, convivial pour les radiologues, les médecins et les patients, et permet l’identification et l’estimation des propriétés des nodules pulmonaires. Les principaux avantages de cette approche de traitement comprennent les aspects suivants : (1) éliminer les faux positifs et les faux négatifs résultant de la reconnaissance des formes, ce qui permet d’aider les médecins à obtenir des informations plus complètes sur l’emplacement, la forme et la taille 3D des nodules pulmonaires, ainsi que leur relation avec le système vasculaire environnant; 2° permettre aux médecins spécialistes d’acquérir une connaissance professionnelle des caractéristiques des nodules pulmonaires même sans l’aide de radiologues; et (3) améliorer à la fois l’efficacité de la communication entre les médecins et les patients et l’évaluation du pronostic.
REMARQUE: Pendant l’étape de prétraitement des données, les données DICOM d’origine doivent être triées et interceptées pour assurer la compatibilité avec divers périphériques et des résultats cohérents. Une capacité réglable adéquate doit être réservée au traitement de l’intensité, et une perspective 3D continue est essentielle pour l’observation. Dans ce protocole, une description méthodique de l’approche de recherche est fournie, détaillant un cas impliquant une patiente de 84 ans présentant des nodules pulmonaires. Cette patiente a donné son consentement éclairé pour son diagnostic via la modélisation numérique et a autorisé l’utilisation de ses données à des fins de recherche scientifique. La fonction de reconstruction du modèle est dérivée de l’outil logiciel PulmonaryNodule (voir le tableau des matériaux pour plus de détails). L’autorisation éthique a été obtenue auprès du Comité d’éthique de l’hôpital Dongzhimen, affilié à l’Université de médecine chinoise de Beijing (DZMEC-KY-2019.90).
1. Collecte et préparation des données
2. Modèle numérique pour la reconstruction 3D horizontale
REMARQUE : Le sous-procédé 3Dlung_Horizon effectue un examen approfondi des nodules pulmonaires d’un point de vue horizontal.
3. Construire un modèle numérique 3D pour un nodule spécifique
REMARQUE: Le numéro de tranche est un paramètre de la fonction 3D_Nodules, qui reconstruit un modèle numérique 3D qui peut être visualisé sous tous les angles.
4. Modèle numérique d’une reconstruction coronale 3D
REMARQUE : Le sous-processus Build_3Dlung_Coronal est exécuté pour évaluer les nodules pulmonaires d’un autre point de vue coronal, aidant ainsi les cliniciens et les patients à développer une compréhension plus précise et inclusive de l’emplacement et des attributs des nodules.
5. Sortie vidéo 3D pour les nodules pulmonaires dominants
REMARQUE: La conversion du modèle numérique 3D optimal d’un nodule pulmonaire en une vidéo 3D dynamique permet aux médecins et aux patients de mieux comprendre la maladie et de porter des jugements précis, ce qui est particulièrement essentiel pour formuler des plans de traitement efficaces.
Pour rendre la méthode applicable à une plus large gamme de périphériques, l’ordre d’empilement de chaque numérisation doit être réorganisé en fonction des coordonnées internes du système de fichiers DICOM (Figure 1) pour générer le volume 3D correct (Figure 2). Sur la base des données de volume précises, nous avons utilisé la reconstruction algorithmique continue des MIP horizontaux et coronaux pulmonaires du patient (Figure
Différents périphériques LDCT présentent des différences significatives dans les séquences d’images DICOM qu’ils produisent, en particulier en termes de gestion du système de fichiers. Par conséquent, pour reconstruire le modèle numérique 3D clé d’un nodule pulmonaire dans les dernières étapes du protocole, l’étape de prétraitement des données est particulièrement importante. Dans l’étape de préparation et de prétraitement des données (étape 1.2.2), les coordonnées de l’axe z de la séq...
L’outil logiciel pour la reconstruction du modèle de nodule pulmonaire, PulmonaryNodule, est un logiciel commercial de Beijing Intelligent Entropy Science & Technology Co Ltd. Les droits de propriété intellectuelle de cet outil logiciel appartiennent à la société. Les auteurs n’ont aucun conflit d’intérêts à divulguer.
Cette publication a été soutenue par le cinquième programme national de recherche sur les excellents talents cliniques en médecine traditionnelle chinoise organisé par l’Administration nationale de la médecine traditionnelle chinoise (http://www.natcm.gov.cn/renjiaosi/zhengcewenjian/2021-11-04/23082.html).
Name | Company | Catalog Number | Comments |
MATLAB | MathWorks | 2022B | Computing and visualization |
Tools for Modeling | Intelligent Entropy | PulmonaryNodule V1.0 | Beijing Intelligent Entropy Science & Technology Co Ltd. Modeling for CT/MRI fusion |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationExplorer plus d’articles
This article has been published
Video Coming Soon
Nous utilisons des cookies afin d'améliorer votre expérience sur notre site web.
En continuant à utiliser notre site ou en cliquant sur le bouton ''continuer'', vous acceptez l'utilisation de cookies.