Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The present protocol describes the full-endoscopic transforaminal approach for lumbar discectomy, which is a safe technique that does not require muscle retraction or bone removal.

Abstract

With technical advancements, the full-endoscopic transforaminal approach for lumbar discectomy (ETALD) is gaining popularity. This technique utilizes various tools and instruments, including a dilator, a beveled working sleeve, and an endoscope with a 20-degree angle and 177 mm length, equipped with a 9.3-diameter oval shaft and a 5.6 mm diameter working channel. Additionally, the procedure involves using a Kerrison punch (5.5 mm), rongeur (3-4 mm), punch (5.4 mm), tip control radioablator applying a radiofrequency current of 4 MHz, fluid control irrigation and suction pump device, 5.5 mm oval burr with lateral protection, burr round, and the diamond round. During the surgery, it is essential to identify significant landmarks, including the caudal pedicle, ascending facet, annulus fibrosis, posterior longitudinal ligament, and the exiting nerve root. The steps of the technique are relatively easy to follow, especially when utilizing the appropriate instruments and having a good understanding of the anatomy. Research studies have demonstrated comparable outcomes to open microdiscectomy techniques. ETALD presents itself as a safe option for lumbar discectomy, as it minimizes tissue disruption, results in low postoperative surgical site pain, and allows for early mobilization.

Introduction

The full-endoscopic transforaminal approach for lumbar discectomy (ETALD) is gaining popularity as a minimally invasive technique in various medical centers. It offers the advantage of requiring less muscular retraction and bone removal compared to conventional techniques1,2. Over time, the technique has undergone advancements since its initial description. Conventional surgeries have shown good results; however, epidural fibrosis occurs in around 10% of cases, leading to symptoms3,4.

The transforaminal approach provides lat....

Protocol

This study protocol has been approved by the Institutional Review Board of Istanbul University, Faculty of Medicine, ensuring adherence to ethical guidelines and patient safety. Additionally, prior to their participation in the study, informed consent was obtained from all patients.

1. Preoperative procedures

  1. Perform the surgery under general anesthesia, adhering to the institutionally approved protocol for anesthetization. Set the endoscope, optic instruments, and.......

Representative Results

The preoperative Magnetic Resonance Imaging (MRI) scans reveal a left paracentral extruding disc herniation that was causing compression on the left L5 nerve root. However, the postoperative MRI scans demonstrate successful decompression of the left L5 nerve root, as depicted in Figure 1. Throughout the procedure, continuous irrigation was utilized, making it challenging to precisely measure the exact amount of blood loss. Nonetheless, it is noteworthy that none of the patients required sign.......

Discussion

In cases of spinal disc herniation, achieving complete decompression is essential and can be optimally accomplished under visual control17,18,19. Technical advancements have made it possible to achieve such decompression even through a full-endoscopic approach. The development of improved optics, endoscopes, and instruments introduced through the working channel has expanded the safe usage of this technique20

Acknowledgements

There is no funding source for this study.

....

Materials

NameCompanyCatalog NumberComments
BURR OVAL Ø 5.5 mmRiwoSpine899751505PACK=1 PC, WL 290 mm, with lateral protection
C-ARMZIEHM SOLOC-arm with integrated monitor
DILATOR ID 1.1 mm OD 9.4 mmRiwoSpine892209510For single-stage dilatation, TL 235 mm, reusable
ENDOSCOPERiwoSpine89210325320 degrees viewing angle and 177 mm length with a 9.3 mm diameter oval shaft with a 5.6 mm diameter working channel
KERRISON PUNCH 5.5 x 4.5 mm WL 380 mmRiwoSpine89240944560°, TL 460 mm, hinged pushrod, reusable
PUNCH Ø 3 mm WL 290 mmRiwoSpine89240.3023TL 388 mm, with irrigation connection, reusable
PUNCH Ø 5.4 mm WL 340 mmRiwoSpine892409020TL 490 mm, with irrigation connection, reusable
RADIOABLATOR RF BNDLRiwoSpine23300011
RF INSTRUMENT BIPO Ø 2.5 mm WL 280 mmRiwoSpine4993691for endoscopic spine surgery, flexible insert, integrated connection cable WL 3 m
with device plug to Radioblator RF 4 MHz, sterile, for single use 
RONGEUR Ø 3 mm WL 290 mmRiwoSpine89240.3003TL 388 mm, with irrigation connection, reusable
WORKING SLEEVE ID 9.5 mm OD 10.5 mmRiwoSpine8922095000TL 120, distal end beveled, graduated, reusable

References

  1. Eustacchio, S., Flaschka, G., Trummer, M., Fuchs, I., Unger, F. Endoscopic percutaneous transforaminal treatment for herniated lumbar discs. Acta Neurochirurgica. 144 (10), 997-1004 (2002).
  2. Haag, M.

Explore More Articles

Full endoscopic Transforaminal ApproachLumbar DiscectomyETALDDilatorBeveled Working SleeveEndoscopeKerrison PunchRongeurPunchRadioablatorFluid Control IrrigationSuction PumpBurrCaudal PedicleAnnulus FibrosisPosterior Longitudinal LigamentExiting Nerve RootMicrodiscectomyTissue DisruptionSurgical Site PainEarly Mobilization

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved