Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

A protocol is presented for designing and manufacturing balloon tags to recover Sensor Fish and live fish, allowing assessment of their physical condition and biological performance in hydraulic structures. The method optimizes balloon tag performance by considering factors such as balloon volume, inflation/deflation times, component selection, and the characteristics of the injected water.

Abstract

Fish may experience injuries and mortality when they pass through hydraulic conveyances at hydropower dams, even if these conveyances are designed to be fish-friendly, such as downstream bypass systems, modified spillways and turbines. The main methods used to study fish passage conditions in hydraulic structures involve direct, in situ testing using Sensor Fish technology and live fish. Sensor Fish data helps identify physical stressors and their locations in the fish passage environment, while live fish are assessed for injuries and mortality. Balloon tags, which are self-inflating balloons attached externally to Sensor Fish and live fish, aid in their recovery after passing through hydraulic structures.

This article focuses on the development of balloon tags with varying numbers of dissolvable, vegetable-based capsules containing a mixture of oxalic acid, sodium bicarbonate powders, and water at two different temperatures. Our research determined that balloon tags with three capsules, injected with 5 mL of water at 18.3 °C, consistently achieved the desired balloon volume. These tags had a mean inflation volume of 114 cm3 with a standard deviation of 1.2 cm3. Among the balloon tags injected with water at 18.3 °C, it was observed that the two-capsule balloon tags took the longest time to reach full inflation. In addition, the four-capsule balloon tags demonstrated a faster inflation start time, while the three-capsule balloon tags demonstrated a faster deflation start time. Overall, this approach proves to be effective for validating the performance of new technologies, improving turbine design, and making operational decisions to enhance fish passage conditions. It serves as a valuable tool for research and field evaluations, aiding in the refinement of both the design and operation of hydraulic structures.

Introduction

Hydropower is a significant renewable energy resource worldwide. In the United States, hydropower contributes an estimated 38% or 274 TWh of electricity generated from renewable sources1 and has the potential to add approximately 460 TWh per year2. However, as hydropower development increases, concerns about fish injury and mortality during hydraulic passage have become paramount3. Various mechanisms contribute to fish injuries during passage, including rapid decompression (barotrauma), shear stress, turbulence, strikes, cavitation, and grinding4. Although these injury mech....

Protocol

1. Acid/base encapsulation

  1. Mix a 1:2 ratio by the weight of H2C2O4 (oxalic acid) and NaHCO3 (sodium bicarbonate) in a mixing cup (see Table of Materials). If the acid-base powder mix is crystallized, grind it down using a mortar and pestle (Figure 1A).
  2. Retrieve the size 3 vegetable-based capsules and the semi-automatic capsule filling machine to begin the process (see Table of Material.......

Representative Results

A study was conducted to determine the optimal methods for manufacturing balloon tags, focusing on the volume and temperature of water injected into the balloon. The study examined various input parameters, including the inflation start time, full inflation time, deflation start time, and the volume of the balloon at full inflation. The study was conducted at a desk with an ambient temperature of 21 °C.

A total of 360 balloon tags were prepared for the study. The tags were divided into 36.......

Discussion

This study concluded that three-capsule balloon tags injected with 5 mL of water at 18.3 °C had a slower start inflation time and consistently larger volume compared to two-capsule and four-capsule balloon tags. When the balloon tags were injected with water at 12.7 °C, the average volume was smaller, and the inflation time was longer. The three-capsule begins deflating first, followed by the four-capsule, and lastly the two-capsule. The inflation and deflation periods associated with each water temperature can.......

Acknowledgements

This study was funded by the U.S. Department of Energy (DOE) Water Power Technologies Office. The laboratory studies were conducted at Pacific Northwest National Laboratory, which is operated by Battelle for the DOE under Contract DE-AC05-76RL01830.

....

Materials

NameCompanyCatalog NumberComments
3D Printed Silicone Stopper PlateNANA
ARC800 Sensor FishATSNA
FDM 3D printerNANA
Manual Capsule Filler Machine CN-400CL (Size #3)CapsulcnNA
Mold Star 15 SLOWSmooth-OnNA
Oil-Resistant Buna-N O-RingMcMaster-CarrSN: 9262K141
Oxalic Acid, 98%, Anhydrous Powder (C2H2O4Thermo Scientific CAS: 144-62-7
Rubber Band Expansion TooliplusmileNA
Separated Vegetable Cellulose Capsules (Size #3)Capsule ConnectionNA
Smiley Face YoYo Latex balloonYoYo Balloons, Etc.NA
Sodium Bicarbonate Powder (CHNaO3SigmaCAS: 144-55-8
Spectra Fiber Braided Fishing Line (50 lbs.)Power ProNA

References

Explore More Articles

Balloon TagSensor FishLive Fish RecoveryFish PassageHydraulic StructuresCost effectiveCustomizableInflation TimeFish friendly HydropowerFish InjuryFish MortalityDissolvable CapsulesOxalic AcidSodium BicarbonateInflation VolumeDeflation Time

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved