Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Aqui, demonstramos um modelo organoide de três etapas (expansão bidimensional [2D], estimulação 2D, maturação tridimensional [3D]) oferecendo uma ferramenta promissora para pesquisa fundamental de tendões e um potencial método livre de andaimes para engenharia de tecidos tendinosos.

Abstract

Tendões e ligamentos (T/L) são estruturas fortes e hierarquicamente organizadas que unem o sistema musculoesquelético. Esses tecidos têm uma matriz extracelular (MEC) rica em colágeno tipo I estritamente disposta e células da linhagem T/L posicionadas principalmente em fileiras paralelas. Após a lesão, o T/L requer muito tempo para reabilitação com alto risco de falha e resultados de reparo muitas vezes insatisfatórios. Apesar dos recentes avanços na pesquisa em biologia T/L, um dos desafios remanescentes é que o campo T/L ainda carece de um protocolo de diferenciação padronizado que seja capaz de recapitular o processo de formação T/L in vitro. Por exemplo, a diferenciação óssea e gordurosa de células precursoras mesenquimais requer apenas cultura de células bidimensionais (2D) padrão e a adição de meios de estimulação específicos. Para diferenciação em cartilagem, é necessária cultura tridimensional (3D) de pellets e suplementação de TGFß. No entanto, a diferenciação celular para o tendão precisa de um modelo de cultura 3D muito ordenado, que idealmente também deve ser submetido a estimulação mecânica dinâmica. Estabelecemos um modelo organoide de 3 etapas (expansão, estimulação e maturação) para formar uma estrutura 3D semelhante a uma haste a partir de uma folha de células automontada, que fornece um microambiente natural com seus próprios fatores ECM, autócrinos e parácrinos. Esses organoides em forma de bastonete têm uma arquitetura celular de várias camadas dentro de um ECM rico e podem ser manuseados com bastante facilidade para exposição a tensão mecânica estática. Aqui, demonstramos o protocolo de 3 etapas usando fibroblastos dérmicos disponíveis comercialmente. Pudemos mostrar que esse tipo de célula forma organoides robustos e abundantes em MEC. O procedimento descrito pode ser ainda mais otimizado em termos de meios de cultura e otimizado para estimulação mecânica axial dinâmica. Da mesma forma, fontes celulares alternativas podem ser testadas quanto ao seu potencial para formar organoides T/L e, assim, sofrer diferenciação T/L. Em suma, a abordagem organoide 3D T/L estabelecida pode ser usada como modelo para pesquisa básica de tendões e até mesmo para engenharia T/L sem andaimes.

Introduction

Tendões e ligamentos (T/L) são componentes vitais do sistema músculo-esquelético que fornecem suporte e estabilidade essenciais ao corpo. Apesar de seu papel crítico, esses tecidos conjuntivos são propensos à degeneração e lesão, causando dor e comprometimento da mobilidade1. Além disso, seu suprimento sanguíneo limitado e capacidade de cicatrização lenta podem levar a lesões crônicas, enquanto fatores como envelhecimento, movimentos repetitivos e reabilitação inadequada aumentam ainda mais o risco de degeneração e lesões2. Os tratamentos convencionais, como repouso, fisioterapia e intervenções cirúrgicas, são incapazes ....

Protocol

NOTA: Todas as etapas devem ser realizadas por meio de técnicas assépticas.

1. Cultura e pré-expansão dos NHDFs

  1. Descongelar rapidamente o frasco criogênico contendo fibroblastos dérmicos humanos normais criopreservados adultos (NHDFs, 1 x 106 células) a 37 ° C até que estejam quase descongelando.
  2. Adicione lentamente 1 mL de meio de crescimento de fibroblastos pré-aquecido 2 (kit pronto para uso incluindo meio basal, soro fetal de bezerr.......

Representative Results

O modelo organoide 3D T/L foi previamente estabelecido e demonstrado aqui pela implementação de NHDF comprado comercialmente (n=3, 3 organoides por doador, NHDF foram usados nas passagens 5-8). O fluxo de trabalho do modelo está resumido na Figura 1. A Figura 2 mostra imagens representativas de contraste de fase da cultura de NHDF durante a pré-expansão em frascos T-75 (Figura 2A), bem como no início e após 5 dias de cultura .......

Discussion

Os resultados demonstrados neste estudo fornecem informações valiosas sobre o estabelecimento e caracterização do modelo organoide 3D NHDF para o estudo de tecidos T/L. O protocolo de 3 etapas levou à formação de organoides 3D semelhantes a bastonetes que exibem características típicas do nicho T / L. Este modelo foi relatado anteriormente em Kroner-Weigl et al. 20237 e demonstrado em grande detalhe aqui.

As imagens de contraste de fase apresentadas na.......

Disclosures

Os autores não têm conflitos de interesse a declarar.

Acknowledgements

DD e SM-D. reconhecer a Concessão BMBF "CellWiTaL: Sistemas celulares reprodutíveis para pesquisa de medicamentos - impressão a laser sem camada de transferência de células únicas altamente específicas em estruturas celulares tridimensionais" Proposta Nr. 13N15874. DD e VRA reconhecem a concessão da UE MSCA-COFUND OTASKILLS "Treinamento holístico de pesquisas de osteoartrite de próxima geração" GA Nr. 101034412. Todos os autores agradecem à Sra. Beate Geyer pela assistência técnica.

....

Materials

NameCompanyCatalog NumberComments
Ascorbic acid  Sigma-Aldrich, Taufkirchen,Germany  A8960
10 cm adherent cell culture dishSigma-Aldrich, Taufkirchen,Germany CLS430167
10 cm non-adherent petri dish Sigma-Aldrich, Taufkirchen,Germany CLS430591
Cryo-mediumTissue-Tek, Sakura Finetek, Alphen aan den Rijn, Netherlands  4583
Cryomold standard Tissue-Tek, Sakura Finetek, Alphen aan den Rijn, Netherlands4557
D(+)-Sucrose AppliChem Avantor VWR International GmbH, Darmstadt, GermanyA2211
DMEM high glucose medium Capricorn Scientific, Ebsdorfergrund, Germany DMEM-HA
DMEM low glucoseCapricorn Scientific, Ebsdorfergrund, Germany  DMEM-LPXA
Fetal bovine serum Anprotec, Bruckberg, Germany AC-SM-0027
Fibroblast growth medium 2 PromoCell, Heidelberg, Germany  C-23020
Inverted microscope with high resolution cameraZeissNAZeiss Axio Observer with  Axiocam 506
MEM amino acids Capricorn Scientific, Ebsdorfergrund, Germany  NEAA-B
Metal pins EntoSphinx, Pardubice, Czech Republic 04.31
Normal human dermal fibroblasts  PromoCell, Heidelberg, Germany C-12302
Paraformaldehyde AppliChem, Sigma-Aldrich, Taufkirchen, Germany A3813
Penicillin/streptomycin Gibco, Thermo Fisher Scientific, Darmstadt, Germany15140122
Phosphate buffer saline Sigma-Aldrich, Taufkirchen, Germany P4417
TGFß3 R&D Systems, Wiesbaden, Germany  8420-B3
Trypsin-EDTA 0,05% DPBS Capricorn Scientific, Ebsdorfergrund, Germany  TRY-1B

References

  1. Schneider, M., Angele, P., Järvinen, T. A. H., Docheva, D. Rescue plan for Achilles: Therapeutics steering the fate and functions of stem cells in tendon wound healing. Adv Drug Deliv Rev. 129, 352-375 (2018).
  2. Steinmann, S., Pfeifer, C. G., Brochhausen, C., Docheva, D.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

BioengenhariaEdi o 208tend esligamentosfibroblastos d rmicosautomontagemorganoides tridimensionais 3Dengenharia de tecidos sem andaimes

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved