Protein transduction enables the direct delivery of biologically active proteins into cells. In contrast to conventional methods such as DNA transfection or viral transduction this non-invasive paradigm allows highly efficient cellular manipulation in a titratable manner circumventing cellular toxicity and the risk of oncogenic transformation by permanent genetic modification.
Goal of the presentation is to demonstrate a highly reproducible method to generate matrix associated stem cell implants in cartilage defects, which can be visualized with MR imaging. Stem cells are labeled with FDA-approved Ferumoxides, mixed with agarose, implanted into cartilage defects and imaged with a 7T MR scanner.
Microbial biofilms are generally constituted by distinct subpopulations of specialized cells. Single-cell analysis of these subpopulations requires the use of fluorescent reporters. Here we describe a protocol to visualize and monitor several subpopulationswithin B. subtilis biofilms using fluorescence microscopy and flow cytometry.
The ITS2 Database is a workbench for phylogenetic inference simultaneously considering sequence and secondary structure of the internal transcribed spacer 2. This includes data collection with accurate annotation, structure prediction, multiple sequence-structure alignment and fast tree calculation. In a nutshell, this workbench simplifies first phylogenetic analyses to a few clicks.
Simultaneous extracellular long term recordings from two different brain neuropiles or two different anatomical tracts were established in honeybees. These recordings allow the investigation of temporal aspects of neuronal processing across different brain areas at the single neuron as well as at the ensemble level in a behaving animal.
Electrical Penetration Graph (EPG) is a well-established technique for studying the feeding behavior of stylet-bearing insects. Here we show a new application of EPG as a non-invasive tool for the acquisition of intracellular electrophysiology recordings of sieve elements (SEs), the cells that form the phloem vasculature in plants.
Generation of induced pluripotent stem cells provides fascinating prospects for the derivation of autologous transplants. However, progression through a pluripotent state and laborious re-differentiation still hinders clinical translation. Here we describe the derivation of adult human fibroblasts and their direct conversion into induced neural progenitor cells and the subsequent differentiation into neural lineages.
We present a three-dimensional (3D) lung cancer model based on a biological collagen scaffold to study sensitivity towards non-small-cell-lung-cancer-(NSCLC)-targeted therapies. We demonstrate different read-out techniques to determine the proliferation index, apoptosis and epithelial-mesenchymal transition (EMT) status. Collected data are integrated into an in silico model for prediction of drug sensitivity.
Acute kidney injury (AKI) is a severe complication in critically ill patients and is related with an increased mortality. Here, we present a reliable and reproducible in vivo model to mimic AKI under inflammatory conditions that might contribute towards understanding the pathogenesis of septic AKI.
We describe a mouse model of experimental cerebral malaria and show how inflammatory and microvascular pathology can be tracked in vivo using magnetic resonance imaging.
Here, the study of different DNA lesion recognition approaches via single molecule AFM imaging is demonstrated with the nucleotide excision repair system as an example. The procedures of DNA and protein sample preparations and experimental as well as analytical details for the AFM experiments are described.
This protocol serves as a comprehensive guideline to fabricate scaffolds via electrospinning with polymer melts in a direct writing mode. We systematically outline the process and define the appropriate parameter settings for achieving targeted scaffold architectures.
We describe an in vitro assay to model chorioallantoic attachment, the first step in placenta formation. The protocol demonstrates the dissection and explant culture of murine allantoides on immobilized α4β1 integrin. Allantois attachment is evaluated microscopically at pre-determined time points.
This protocol delineates the technical setting of a developed mixed reality application that is used for immersive analytics. Based on this, measures are presented, which were used in a study to gain insights into usability aspects of the developed technical solution.
The protocol described here highlights the major steps in the differentiating induced pluripotent stem-cell derived brain-like endothelial cells, the preparation of Neisseria meningitidis for infection, and sample collection for other molecular analyses.
The anterior-based muscle-sparing approach for total hip arthroplasty (THA) is associated with a learning curve. However, the improved clinical outcome in the early post-operative phase makes the consideration to transition worthwhile.
Presented here is a protocol for the preparation and buffer calibration of cell extracts from exonuclease V knockout strains of Escherichia coli BL21 Rosetta2 (ΔrecBCD and ΔrecB). This is a fast, easy, and direct approach for expression in cell-free protein synthesis systems using linear DNA templates.
Herein, we demonstrate a three-step organoid model (two-dimensional [2D] expansion, 2D stimulation, three-dimensional [3D] maturation) offering a promising tool for tendon fundamental research and a potential scaffold-free method for tendon tissue engineering.
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved