Oturum Aç

An alkene, such as propene, reacts with bromine in the presence of water to yield a halohydrin. Halohydrins contain a halogen and a hydroxyl group attached to adjacent carbons. When the halogen is bromine, it is called a bromohydrin, while a chlorohydrin has chlorine as the halogen.

Figure1

Halohydrin formation commences when the π electrons of the alkene react with electrophilic bromine to form a bridged intermediate called a bromonium ion.Water, acting as a nucleophile, uses a lone pair of electrons to open the three-membered bromonium ion ring and forms a bond with the carbon in an SN2 process.

Figure3

The deprotonation of the oxonium ion yields a hydronium ion and the neutral bromohydrin addition product.

Figure4

The preferred opening of the cyclic bromonium ion intermediate by the regioselective attack of water on the more substituted carbon of the alkene can be explained based on two factors. Primarily, the electrostatic potential map of a bromonium ion shows that the more substituted carbon exhibits a greater carbocation character.

Figure5

Additionally, the bond of the halogen with the more substituted carbon of the halonium ion is longer than that with the less substituted carbon.

Figure6

This difference in bond lengths in the cyclic intermediate indicates that the ring-opening transition state can be attained more efficiently by the attack of the nucleophile at the more substituted carbon.

Figure7

Since the mechanism involves a halonium ion, the stereochemistry of addition is anti. When 1-methylcyclohexene is treated with bromine, a pair of enantiomeric bromonium ions is obtained.

Figure8

The anti addition of water gives trans-2-bromo-1-methylcyclohexanol as a racemic mixture.

Figure9

Etiketler

AlkeneHalohydrinBromineWaterBromonium IonChlorohydrinNucleophileSN2 ProcessOxonium IonRegioselective AttackCarbocation CharacterBond LengthRing opening Transition StateStereochemistry

Bölümden 8:

article

Now Playing

8.4 : Formation of Halohydrin from Alkenes

Alkenlerin Tepkimeleri

12.4K Görüntüleme Sayısı

article

8.1 : Elektrofilik İlavelerin Bölgesel Seçiciliği-Peroksit Etkisi

Alkenlerin Tepkimeleri

8.0K Görüntüleme Sayısı

article

8.2 : Serbest Radikal Zincir Reaksiyonu ve Alkenlerin Polimerizasyonu

Alkenlerin Tepkimeleri

7.3K Görüntüleme Sayısı

article

8.3 : Alkenlerin halojenasyonu

Alkenlerin Tepkimeleri

14.8K Görüntüleme Sayısı

article

8.5 : Alkenlerin Asit Katalizli Hidrasyonu

Alkenlerin Tepkimeleri

12.9K Görüntüleme Sayısı

article

8.6 : Asit Katalizli Hidrasyonun Bölgesel Seçiciliği ve Stereokimyası

Alkenlerin Tepkimeleri

8.2K Görüntüleme Sayısı

article

8.7 : Alkenlerin Oksimerkürasyonu-İndirgenmesi

Alkenlerin Tepkimeleri

7.1K Görüntüleme Sayısı

article

8.8 : Alkenlerin Hidroborasyon-Oksidasyonu

Alkenlerin Tepkimeleri

7.3K Görüntüleme Sayısı

article

8.9 : Hidroborasyonun Bölgesel Seçiciliği ve Stereokimyası

Alkenlerin Tepkimeleri

7.9K Görüntüleme Sayısı

article

8.10 : Alkenlerin Oksidasyonu: Osmiyum Tetraoksit ile Syn Dihidroksilasyon

Alkenlerin Tepkimeleri

9.5K Görüntüleme Sayısı

article

8.11 : Alkenlerin Oksidasyonu: Potasyum Permanganat ile Syn Dihidroksilasyon

Alkenlerin Tepkimeleri

10.1K Görüntüleme Sayısı

article

8.12 : Alkenlerin Oksidasyonu: Peroksi Asitlerle Anti Dihidroksilasyon

Alkenlerin Tepkimeleri

5.2K Görüntüleme Sayısı

article

8.13 : Alkenlerin Oksidatif Bölünmesi: Ozonoliz

Alkenlerin Tepkimeleri

9.4K Görüntüleme Sayısı

article

8.14 : Alkenlerin İndirgenmesi: Katalitik Hidrojenasyon

Alkenlerin Tepkimeleri

11.5K Görüntüleme Sayısı

article

8.15 : Alkenlerin İndirgenmesi: Asimetrik Katalitik Hidrojenasyon

Alkenlerin Tepkimeleri

3.2K Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır