S'identifier

An alkene, such as propene, reacts with bromine in the presence of water to yield a halohydrin. Halohydrins contain a halogen and a hydroxyl group attached to adjacent carbons. When the halogen is bromine, it is called a bromohydrin, while a chlorohydrin has chlorine as the halogen.

Figure1

Halohydrin formation commences when the π electrons of the alkene react with electrophilic bromine to form a bridged intermediate called a bromonium ion.Water, acting as a nucleophile, uses a lone pair of electrons to open the three-membered bromonium ion ring and forms a bond with the carbon in an SN2 process.

Figure3

The deprotonation of the oxonium ion yields a hydronium ion and the neutral bromohydrin addition product.

Figure4

The preferred opening of the cyclic bromonium ion intermediate by the regioselective attack of water on the more substituted carbon of the alkene can be explained based on two factors. Primarily, the electrostatic potential map of a bromonium ion shows that the more substituted carbon exhibits a greater carbocation character.

Figure5

Additionally, the bond of the halogen with the more substituted carbon of the halonium ion is longer than that with the less substituted carbon.

Figure6

This difference in bond lengths in the cyclic intermediate indicates that the ring-opening transition state can be attained more efficiently by the attack of the nucleophile at the more substituted carbon.

Figure7

Since the mechanism involves a halonium ion, the stereochemistry of addition is anti. When 1-methylcyclohexene is treated with bromine, a pair of enantiomeric bromonium ions is obtained.

Figure8

The anti addition of water gives trans-2-bromo-1-methylcyclohexanol as a racemic mixture.

Figure9

Tags

AlkeneHalohydrinBromineWaterBromonium IonChlorohydrinNucleophileSN2 ProcessOxonium IonRegioselective AttackCarbocation CharacterBond LengthRing opening Transition StateStereochemistry

Du chapitre 8:

article

Now Playing

8.4 : Formation of Halohydrin from Alkenes

Réactions des alcènes

12.4K Vues

article

8.1 : Régiosélectivité des additions électrophiles - effet Kharasch

Réactions des alcènes

8.0K Vues

article

8.2 : Réaction en chaîne de radicaux libres et polymérisation des alcènes

Réactions des alcènes

7.3K Vues

article

8.3 : Halogénation des alcènes

Réactions des alcènes

14.8K Vues

article

8.5 : Hydratation des alcènes catalysée par l'acide

Réactions des alcènes

12.9K Vues

article

8.6 : Régiosélectivité et stéréochimie de l'hydratation catalysée par l'acide

Réactions des alcènes

8.2K Vues

article

8.7 : Oxymercuration-réduction des alcènes

Réactions des alcènes

7.1K Vues

article

8.8 : Hydroboration-oxydation des alcènes

Réactions des alcènes

7.3K Vues

article

8.9 : Régiosélectivité et stéréochimie de l'hydroboration

Réactions des alcènes

7.9K Vues

article

8.10 : Oxydation des alcènes : dihydroxylation SYN avec le tétroxyde d'osmium

Réactions des alcènes

9.5K Vues

article

8.11 : Oxydation des alcènes : dihydroxylation SYN avec le permanganate de potassium

Réactions des alcènes

10.1K Vues

article

8.12 : Oxydation des alcènes : anti-dihydroxylation avec des acides peroxy

Réactions des alcènes

5.2K Vues

article

8.13 : Clivage oxydatif des alcènes : ozonolyse

Réactions des alcènes

9.4K Vues

article

8.14 : Réduction des alcènes : hydrogénation catalytique

Réactions des alcènes

11.5K Vues

article

8.15 : Réduction des alcènes : hydrogénation catalytique asymétrique

Réactions des alcènes

3.2K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.