Entrar

An alkene, such as propene, reacts with bromine in the presence of water to yield a halohydrin. Halohydrins contain a halogen and a hydroxyl group attached to adjacent carbons. When the halogen is bromine, it is called a bromohydrin, while a chlorohydrin has chlorine as the halogen.

Figure1

Halohydrin formation commences when the π electrons of the alkene react with electrophilic bromine to form a bridged intermediate called a bromonium ion.Water, acting as a nucleophile, uses a lone pair of electrons to open the three-membered bromonium ion ring and forms a bond with the carbon in an SN2 process.

Figure3

The deprotonation of the oxonium ion yields a hydronium ion and the neutral bromohydrin addition product.

Figure4

The preferred opening of the cyclic bromonium ion intermediate by the regioselective attack of water on the more substituted carbon of the alkene can be explained based on two factors. Primarily, the electrostatic potential map of a bromonium ion shows that the more substituted carbon exhibits a greater carbocation character.

Figure5

Additionally, the bond of the halogen with the more substituted carbon of the halonium ion is longer than that with the less substituted carbon.

Figure6

This difference in bond lengths in the cyclic intermediate indicates that the ring-opening transition state can be attained more efficiently by the attack of the nucleophile at the more substituted carbon.

Figure7

Since the mechanism involves a halonium ion, the stereochemistry of addition is anti. When 1-methylcyclohexene is treated with bromine, a pair of enantiomeric bromonium ions is obtained.

Figure8

The anti addition of water gives trans-2-bromo-1-methylcyclohexanol as a racemic mixture.

Figure9

Tags

AlkeneHalohydrinBromineWaterBromonium IonChlorohydrinNucleophileSN2 ProcessOxonium IonRegioselective AttackCarbocation CharacterBond LengthRing opening Transition StateStereochemistry

Do Capítulo 8:

article

Now Playing

8.4 : Formação de Haloidrina a Partir de Alquenos

Reações de Alquenos

12.4K Visualizações

article

8.1 : Regiosseletividade de Adições Eletrofílicas-Efeito de Peróxido

Reações de Alquenos

8.0K Visualizações

article

8.2 : Reação em Cadeia de Radicais Livres e Polimerização de Alquenos

Reações de Alquenos

7.3K Visualizações

article

8.3 : Halogenação de Alquenos

Reações de Alquenos

14.8K Visualizações

article

8.5 : Hidratação de Alquenos Catalisada por Ácido

Reações de Alquenos

12.9K Visualizações

article

8.6 : Regiosseletividade e Estereoquímica da Hidratação Catalisada por Ácido

Reações de Alquenos

8.2K Visualizações

article

8.7 : Oximercuração-Redução de Alquenos

Reações de Alquenos

7.1K Visualizações

article

8.8 : Hidroboração-Oxidação de Alquenos

Reações de Alquenos

7.3K Visualizações

article

8.9 : Regiosseletividade e Estereoquímica da Hidroboração

Reações de Alquenos

7.9K Visualizações

article

8.10 : Oxidação de Alquenos: Sin-diidroxilação com Tetraóxido de Ósmio

Reações de Alquenos

9.5K Visualizações

article

8.11 : Oxidação de Alquenos: Sin-diidroxilação com Permanganato de Potássio

Reações de Alquenos

10.1K Visualizações

article

8.12 : Oxidação de Alquenos: Antidiidroxilação com Peroxiácidos

Reações de Alquenos

5.2K Visualizações

article

8.13 : Clivagem Oxidativa de Alquenos: Ozonólise

Reações de Alquenos

9.4K Visualizações

article

8.14 : Redução de Alquenos: Hidrogenação Catalítica

Reações de Alquenos

11.5K Visualizações

article

8.15 : Redução de Alquenos: Hidrogenação Catalítica Assimétrica

Reações de Alquenos

3.2K Visualizações

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados