Hypothesis testing is a critical statistical procedure facilitating informed, evidence-based decisions. It begins with a hypothesis, which is a tentative explanation, or a prediction about a population parameter. This hypothesis can be either a null hypothesis (H0), indicating no effect or difference, or an alternative hypothesis (Ha), suggesting an effect or difference.

Statistical significance measures the probability that an observed result occurred by chance. If this probability, known as the p-value, falls below a predetermined threshold, typically 0.05 or 0.01, it provides strong evidence against the null hypothesis, deeming the result statistically significant.

Hypothesis testing is crucial for decision-making and drawing accurate conclusions about populations. For instance, a pharmaceutical company might test a new drug's effectiveness in reducing cholesterol levels. The null hypothesis would state that the drug has no effect, while the alternative hypothesis would state that it does. Hypothesis testing can then determine whether there is enough evidence to support the drug's effectiveness claim.

Similarly, a researcher investigating income differences between two employee groups would use hypothesis testing. The null hypothesis would propose no difference, while the alternative hypothesis would propose a difference. The test would help determine whether enough evidence exists to reject the null hypothesis. If this were the case, the researcher would conclude that there is a statistically significant income difference.

Hypothesis testing is an essential part of statistical analysis. It provides a systematic, precise approach to evaluating claims and making decisions based on statistical evidence.

Bölümden 2:

article

Now Playing

2.5 : Statistical Hypothesis Testing

Biostatistics: Introduction

1.8K Görüntüleme Sayısı

article

2.1 : Biyoistatistik: Genel Bakış

Biostatistics: Introduction

172 Görüntüleme Sayısı

article

2.2 : Veri: Türler ve Dağılım

Biostatistics: Introduction

515 Görüntüleme Sayısı

article

2.3 : Merkezi Eğilim: Analiz

Biostatistics: Introduction

106 Görüntüleme Sayısı

article

2.4 : Değişkenlik: Analiz

Biostatistics: Introduction

96 Görüntüleme Sayısı

article

2.6 : Hipotez Testlerinde Doğruluk ve Hatalar

Biostatistics: Introduction

116 Görüntüleme Sayısı

article

2.7 : Parametrik Verileri Analiz Etmek için İstatistiksel Yöntemler: ANOVA

Biostatistics: Introduction

167 Görüntüleme Sayısı

article

2.8 : Parametrik Verileri Analiz Etmek İçin İstatistiksel Yöntemler: Student t-Testi ve Goodness-of-Fit Testi

Biostatistics: Introduction

1.4K Görüntüleme Sayısı

article

2.9 : Hipotez Testinde İstatistiksel Çıkarım Teknikleri: Parametrik ve Parametrik Olmayan Veriler

Biostatistics: Introduction

66 Görüntüleme Sayısı

article

2.10 : Biyofarmasötik Çalışma Türleri: Kontrollü ve Kontrolsüz Yaklaşımlar

Biostatistics: Introduction

87 Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır