JoVE Logo

Oturum Aç

18.2 : Conservation of Mass in Fixed, Nondeforming Control Volume

The principle of conservation of mass is fundamental in fluid dynamics and is crucial for analyzing flow within fixed control volumes, such as pipes or ducts. This principle states that the total mass within a control volume remains constant unless altered by the inflow or outflow of mass through the control surfaces. This results in a vital relationship for steady, incompressible flow where the mass entering a system equals the mass leaving it.

In the case of a sewer pipe, which can be modeled as a fixed, nondeforming control volume, mass conservation dictates that the inlet's mass flow rate must equal the outlet's mass flow rate. The control surfaces in this scenario are at the inlet and outlet of the pipe, enclosing the flow region. Given that the flow is incompressible, the density of the fluid remains constant. This means that the relationship between velocity and cross-sectional area becomes critical.

Mass Flow Rate and Cross-Sectional Area

The mass flow rate () is expressed in terms of fluid density (Ρ) and flow rate (Q). Here, the flow rate is determined by multiplying the velocity (V) by the cross-sectional area (A).

Equation 1

For steady flow, where the density remains constant, this equation simplifies to indicate that any change in velocity must correspond to a change in the pipe's cross-sectional area. When the pipe's cross-sectional area decreases, as might happen at the outlet of a sewer pipe, the velocity of the fluid must increase to conserve mass flow rate. The continuity equation describes this phenomenon:

Equation 2

Where V1 and A1 denotes the velocity and cross-sectional area at the inlet and V2 and A2 at the outlet. This relationship predicts flow behavior and design systems that maintain appropriate flow rates while adhering to the principle of mass conservation.

Etiketler

Conservation Of MassFixed Control VolumeFluid DynamicsMass Flow RateSewer PipeIncompressible FlowDensityVelocityCross sectional AreaContinuity EquationFlow BehaviorFlow RateControl Surfaces

Bölümden 18:

article

Now Playing

18.2 : Conservation of Mass in Fixed, Nondeforming Control Volume

Finite Control Volume Analysis

812 Görüntüleme Sayısı

article

18.1 : Conservation of Mass in Finite Cotrol Volume

Finite Control Volume Analysis

871 Görüntüleme Sayısı

article

18.3 : Conservation of Mass in Moving, Nondeforming Control Volume

Finite Control Volume Analysis

698 Görüntüleme Sayısı

article

18.4 : Linear Momentum in Control Volume

Finite Control Volume Analysis

660 Görüntüleme Sayısı

article

18.5 : Application of the Linear Momentum Equation

Finite Control Volume Analysis

58 Görüntüleme Sayısı

article

18.6 : Moment-of-Momentum Equation

Finite Control Volume Analysis

77 Görüntüleme Sayısı

article

18.7 : Conservation of Energy in Control Volume

Finite Control Volume Analysis

441 Görüntüleme Sayısı

article

18.8 : Application of the Energy Equation

Finite Control Volume Analysis

483 Görüntüleme Sayısı

article

18.9 : Design Example: Forces in Sluice Gate

Finite Control Volume Analysis

254 Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır