JoVE Logo

Oturum Aç

Bu içeriği görüntülemek için JoVE aboneliği gereklidir. Oturum açın veya ücretsiz deneme sürümünü başlatın.

Bu Makalede

  • Özet
  • Özet
  • Giriş
  • Protokol
  • Sonuçlar
  • Tartışmalar
  • Açıklamalar
  • Teşekkürler
  • Malzemeler
  • Referanslar
  • Yeniden Basımlar ve İzinler

Özet

Bu makale, Fe2O3 / faujazit (FAU) tipi zeolit kompozit malzemeyi kırmızı topraktan sentezlemek için yeni ve uygun bir yol sunmaktadır. Ayrıntılı sentez parametreleri ince ayarlanmıştır. Elde edilen kompozit malzeme, çevre mühendisliğindeki potansiyel uygulamalarını gösteren verimli ağır metal kontamine su ıslahı için kullanılabilir.

Özet

Ağır metal ile kirlenmiş su, insan sağlığı ve eko-çevre için büyük endişe kaynağıdır. Yüksek verimli adsorpsiyon malzemelerinin sağladığı yerinde su ıslah teknikleri, bu koşullarda büyük önem taşımaktadır. Su ıslahında kullanılan tüm malzemeler arasında, demir bazlı nanomalzemeler ve gözenekli malzemeler, zengin redoks reaktivitesi ve adsorpsiyon fonksiyonlarından yararlanarak büyük ilgi görmektedir. Burada, Fe2O3 / faujazit (FAU) tipi zeolit kompozit malzemeyi üretmek için güney Çin'deki yaygın kırmızı toprağı doğrudan dönüştürmek için kolay bir protokol geliştirdik.

Ayrıntılı sentez prosedürü ve reaksiyon sıcaklığı, reaksiyon süresi ve hammaddelerdeki Si / Al oranı gibi sentez parametreleri dikkatlice ayarlanmıştır. Sentezlenen kompozit malzemeler, tipik ağır metal (loid) iyonları için iyi adsorpsiyon kapasitesi gösterir. Farklı ağır metal (loid) kirli sulu çözeltilere (tek tip ağır metal (loid) konsantrasyonu: 1.000 mg / L [ppm]) eklenen 0.001 g / mL Fe2O3 / FAU tipi zeolit kompozit malzeme ile, adsorpsiyon kapasitesinin Cu (II), Cr (III), Cr (VI) için 172, 45, 170, 40, 429, 693, 94 ve 133 mg / g olduğu gösterilmiştir. Sırasıyla (III), Cd (II), Pb (II), Zn (II) ve Ni (II) giderimi, ağır metal kirli su ve toprak ıslahı için daha da genişletilebilir.

Giriş

Antropojenik ve doğal aktivitelerden kaynaklanan ağır metal (loid) hava, su ve toprak ortamında her yerde bulunur1. Yüksek hareketlilik ve toksisiteye sahiptirler, doğrudan temas yoluyla veya gıda zinciri taşımacılığı yoluyla insanlar için potansiyel bir sağlık riski oluştururlar2. Su, her ailenin hammaddesi olduğu için insanların yaşamı için hayati öneme sahiptir. Su sağlığını iyileştirmek çok önemlidir. Bu nedenle toksik ağır metal(loid)'lerin sudaki hareketliliğini ve biyoyararlanımını azaltmak büyük önem taşımaktadır. Suda sağlığı korumak için, biyokömür, demir bazlı malzemeler ve zeolit gibi su iyileştirme malzemeleri, ağır metal (loid) lerin sulu ortamlardan hareketsiz hale getirilmesinde veya çıkarılmasında önemli bir rol oynamaktadır 3,4,5.

Zeolitler, kristal yapılarında benzersiz gözeneklere ve kanallara sahip oldukça kristalin malzemelerdir. Paylaşılan O atomları tarafından bağlanan TO4 tetrahedradan (T, genellikle Si, Al veya P'nin merkezi atomudur) oluşur. Gözeneklerdeki negatif yüzey yükü ve değiştirilebilir iyonlar, onu ağır metal kirli su ve toprak ıslahında yaygın olarak kullanılan iyon yakalama için popüler bir adsorban haline getirir. Yapılarından yararlanarak, zeolitler tarafından kirletici maddelerin uzaklaştırılmasında yer alan iyileştirme mekanizmaları esas olarak kimyasal bağlanma6, yüzey elektrostatik etkileşimi7 ve iyon değişimi8'i içerir.

Faujazit (FAU) tipi zeolit, maksimum gözenek çapı 11.24 şolan nispeten büyük gözeneklere sahiptir. Kirletici madde giderimi için yüksek verimlilik ve geniş uygulamalar gösterir 9,10. Son yıllarda, kapsamlı araştırmalar, silikon ve alüminyum kaynakları sağlamak için endüstriyel katı atıkların11 hammadde olarak kullanılması veya yönlendirici ajansız tariflerin benimsenmesi12 gibi zeolit sentezi için yeşil ve düşük maliyetli rutinler geliştirmeye adanmıştır. Silikon ve alüminyum kaynaklı olabilen bildirilen alternatif endüstriyel katı atıklar arasında kömür gangu 13, uçucu kül11, atık moleküler elekler 14, madencilik ve metalurjik atıklar 15, mühendislikten vazgeçilmiş toprak 8 ve tarım toprağı6, vb.

Burada hammadde olarak bol ve kolay elde edilebilen silikon ve alüminyum bakımından zengin bir malzeme olan kırmızı toprak benimsenmiş ve Fe2O3/FAU tipi zeolit kompozit malzeme sentezi için kolay bir yeşil kimya yaklaşımı geliştirilmiştir (Şekil 1). Ayrıntılı sentez parametreleri ince ayarlanmıştır. Sentezlenen malzeme, ağır metal ile kirlenmiş su ıslahı için yüksek immobilizasyon kapasitesi gösterir. Bu çalışma, bu alanla ilgilenen ilgili araştırmacıların toprağı eko-materyal sentezi için hammadde olarak kullanmaları için öğretici olmalıdır.

Access restricted. Please log in or start a trial to view this content.

Protokol

1. Hammadde toplama ve işleme

  1. Kırmızı toprak toplama
    1. Kırmızı toprağı topla. Bitki ve artık organik madde içeren toprağın 30 cm'lik üst tabakasını çıkarın.
      NOT: Bu deneyde, kırmızı toprak Güney Bilim ve Teknoloji Üniversitesi (SUSTech), Shenzhen, Guangdong, Çin kampüsünde (113 ° 59 'E, 22 ° 36 ' N) toplanmıştır.
  2. Kırmızı toprak tedavisi
    1. Toplanan kırmızı toprağı oda sıcaklığında hava ile kurutun ve 30 mesh elek ile süzün. Büyük taşların ve yaprakların çoğunu çıkarın. İstenmeyen bir kirlilik olmadığından emin olmak için kırmızı topraktaki ağır metal (loid) konsantrasyonunu (Tablo 1) endüktif olarak eşleşmiş plazma kütle spektrometresi (ICP-MS)16 ile ölçün.
      NOT: Hammaddede silikon olmayan veya alüminyum içeren birkaç büyük nesne olacağından küçük delikli bir elek önerilir. Burada, bu deneydeki hammaddeyi işlemek için 30 meşallik bir elek yeterlidir.

2. Fe2O3/FAU tipi zeolit sentezi

  1. Alkali karışım tozunun hazırlanması
    1. 5 g önceden işlenmiş kırmızı toprak, 1 g SiO2 ve 7.63 g NaOH ağırlığında ve bunları doğal bir akik harcına ekleyin. Onları 2-3 dakika boyunca ince bir toz haline getirin. Laboratuvardaki bağıl nemin %65-%72 olduğundan emin olun.
      NOT: NaOH çok higroskopik olduğu için taşlama süresine dikkat edin. Hava atmosferinden suyu kolayca emebilir. Orta nemli bir alkali tozu, deneyin bir sonraki adımı için çok önemlidir. Öğütme süresi laboratuvardaki nem ile ilgilidir.
  2. Alkali füzyonu/aktivasyonu
    1. Alkali karışımı paslanmaz çelik dış kaplama olmadan 100 mL Teflon reaktör astarı içine aktarın. 200 °C'lik fırında 1 saat ısıtın.
      NOT: Bu adımın amacı, Si-O bağını ve Al-O bağı17'yi aktive etmek için güçlü NaOH tabanını kullanmaktır, böylece Al, Si ve O atomları istenen alüminosilikat zeolitini oluşturmak için yeniden birleşir.
  3. Zeolit öncüsünün hazırlanması
    1. Aktif alkali karışımını içeren Teflon reaktör astarı içine 60 mL deiyonize su ekleyin. Uygun boyutta bir karıştırma çubuğu ekleyin ve karışımı manyetik karıştırıcı üzerinde 25 ° C'de 3 saat boyunca 600 rpm'de karıştırın. Zeolit öncüsü18 olarak homojen bir jelin oluşmasını bekleyin.
  4. Kristalizasyon
    1. Homojen jeli 100 mL paslanmaz çelik otoklavın içine aktarın ve jeli 100 °C'lik bir fırında 12 saat ısıtın. Fırının kapısını açmak ve otoklavı dışarı çıkarmak için varsayılan soğutma programını izleyerek fırının oda sıcaklığına soğumasını bekleyin.
      NOT: Otoklav, kristalleşme işlemini hızlandırmak için yüksek sıcaklıklar altında yüksek basınç üretir. Yüksek basınçtan kaynaklanan bir patlamayı önlemek için daima oda sıcaklığına ulaşmasını bekleyin.
  5. Elde edilen zeolit, çözelti pH'ı 7'ye yakın olana kadar birkaç kez deiyonize suyla yıkayın. Katı ve sıvıyı ayırmak için bir santrifüj kullanın ve katı maddeyi 50 mL santrifüj tüpünün altında toplayın. Son olarak, elde edilen ürünü 80 °C'lik bir fırında 8 saat kurutun ve sonraki karakterizasyon için ince toz haline getirin.
  6. Karakterizasyonu
    1. Kırmızı toprak için X-ışını floresansı (XRF) spektrometre sonucunu elde edin (Şekil 2). Toprağın inorganik element konsantrasyonunu doğru bir şekilde ölçmek için kullanılır19.
    2. Fe2O3'ün kristal bilgi dosyasını (CIF) İnorganik Kristal Yapı Veritabanı'ndan (ICSD) edinin. Zeolit Yapıları Veritabanı'ndan FAU tipi zeolitin CIF dosyasını edinin.
      NOT: Mercury ve Materials Studio (MS), kristal yapı görselleştirme araçları olarak kullanılabilir. Bu çalışmada Fe2O 3 yapısının görselleştirilmesinde Merkür, FAU tipi zeolit için MS kullanılmıştır (Şekil 3).
    3. Sentezlenmiş Fe2O3/FAU tipi zeolit kompozit malzemenin fazını doğrulamak için bir toz X-ışını kırınım (PXRD) paterni elde edin (Şekil 4)20. JADE 6.5 yazılımını kullanarak Fe2O3'ün simüle edilmiş PXRD paterni ve FAU tipi zeolit ile karşılaştırın.
      NOT: Cambridge Kristalografik Veri Merkezi (CCDC) tarafından geliştirilen Mercury yazılımı, tamamen tanımlanmış inorganik kristal yapılar için dünyanın en büyük veritabanı olan ICSD'den elde edilen standart malzemelerin CIF dosyasına dayanarak PXRD modelini hesaplayabilir.
    4. Morfolojiyi doğrulamak için bir taramalı elektron mikroskobu (SEM) görüntüsü edinin (Şekil 5)20.
    5. Kimyasalbileşimi belirlemek için iletim elektron mikroskobu (TEM) enerji dağıtıcı X-ışını spektroskopisi (EDS) haritalaması (Şekil 6) elde edin.
      NOT: SEM-EDS haritalaması ile karşılaştırıldığında, TEM-EDS haritalaması düşük miktarda element bileşimini algılayabilir.

3. Toplu adsorpsiyon deneyi

  1. 50 mL'lik 1.000 ppm Cu (II), Cr (III), Cr (VI), As (III), Cd (II), Pb (II), Zn (II) ve Ni (II) sulu çözeltiler hazırlayın. Her çözeltinin pH'ına dikkat edin.
  2. Her ağır metal (loid) çözeltisine 50 mg zeolit ekleyin. Karışım çözeltisinin pH'ını 0,1 M HCl veya 0,1 M NaOH ile hassas bir şekilde ayarlayın. Karışımı 25 °C'de 48 saat boyunca 600 rpm'de karıştırın.
    NOT: Her ağır metal (loid) iyonu, metal hidroksit çökeltmesi olmadan sabit bir pH aralığına sahiptir. Son karışık çözeltinin pH'ını bir pH aralığına ayarlayın, böylece ağır metal (loid) konsantrasyonundaki azalma zeolitin performansına bağlanabilir.
  3. Cu (II), Cr (III), Cr (VI), As (III), Cd (II), Pb (II), Zn (II) ve Ni (II)'nin nihai karışık çözeltilerinin pH'ını sırasıyla 4.2, 3.9, 6.4, 7.8, 5.8, 5.2, 5.7 ve 6.4 olarak ayarlayın.
  4. Karışık çözeltileri 0,22 μm membranlardan süzün. Bunları% 2 HNO3 çözeltisi ekleyerek 1.000 kat seyreltin. Kalıntı ağır metal (loid) konsantrasyonlarını (Şekil 6) endüktif olarak eşleşmiş plazma kütle spektrometresi (ICP-MS)16 ile, 0,001 ppm ila 1 ppm test aralığı ile ölçün. ICP-MS çalışma parametreleri için Tablo 2'ye bakın.

Access restricted. Please log in or start a trial to view this content.

Sonuçlar

Şekil 1 , "toprak ıslahı için toprak" stratejisi6'ya dayanan zeolitin genel sentez yolunu göstermektedir. Basit bir organik içermeyen yol ile kırmızı toprak, herhangi bir Fe veya Al kaynağı eklenmeden Fe2O3 / FAU tipi zeolit kompozit malzemeye dönüştürülebilir. Sentezlenmiş zeolit kompozit malzeme, ağır metal ile kirlenmiş su ıslahı için mükemmel uzaklaştırma kapasitesi sergiler ve toprak ıslahı için kullanılabilir.<...

Access restricted. Please log in or start a trial to view this content.

Tartışmalar

Zeolit tipik olarak bir alüminosilikat malzemedir. Teorik olarak, silikat ve alüminat bakımından zengin malzemeler zeolit sentezi için hammadde olarak seçilebilir. Hammaddenin Si / Al oranı, ek silikon / alüminyum kaynaklarının kullanımını en aza indirmek için seçilen zeolit tipine benzer olmalıdır 6,8,16. FAU tipi zeolitin Si / Al oranı 1.2 ve kırmızı toprağın Si / Al oranı 1.3'tür. Bu nedenle, kırmız...

Access restricted. Please log in or start a trial to view this content.

Açıklamalar

Yazarların açıklayacağı bir çıkar çatışması yoktur.

Teşekkürler

Bu çalışma, Çin'in Guangdong Eyaleti Seçkin Genç Bilgini için Doğa Bilimleri Fonları, No. 2020B151502094 tarafından finansal olarak desteklenmiştir; Çin Ulusal Doğa Bilimleri Vakfı, No. 21777045 ve 22106064; Shenzhen Bilim, Teknoloji ve İnovasyon Komisyonu Vakfı, Çin, JCYJ20200109141625078; Guangdong üniversiteleri ve kolejlerinin 2019 gençlik inovasyon projesi, Çin, No. 2019KQNCX133 ve Guangdong Eyaletinin bilim ve teknoloji inovasyon stratejisi için özel bir fon (PDJH2021C0033). Bu çalışma, Shenzhen Anahtar Yüzey Bilimi ve Malzeme Mühendisliği Laboratuvarı tarafından desteklenmiştir (No. ZDSYS20200421111401738), Guangdong İl Toprak ve Yeraltı Suyu Kirlilik Kontrolü Anahtar Laboratuvarı (2017B030301012) ve Entegre Yüzey Suyu-Yeraltı Suyu Kirlilik Kontrolü Devlet Çevre Koruma Anahtar Laboratuvarı. Özellikle, SUSTech Temel Araştırma Tesisleri'nin teknik desteğini kabul ediyoruz.

Access restricted. Please log in or start a trial to view this content.

Malzemeler

NameCompanyCatalog NumberComments
Chemicals
Cadmium nitrate tetrahydrateShanghai Aladdin Bio-Chem Technology Co., LTDC102676AR, 99%. Make 1,000 ppm  stock solution for the test of adsorption performance of zeolite.
Chromium(III) nitrate nonahydrateShanghai Aladdin Bio-Chem Technology Co., LTDC116446AR, 99%. Make 1,000 ppm  stock solution for the test of adsorption performance of zeolite.
Copper sulfate pentahydrateShanghai Aladdin Bio-Chem Technology Co., LTDC112396AR, 99%. Make 1,000 ppm  stock solution for the test of adsorption performance of zeolite.
Lead nitrateShanghai Aladdin Bio-Chem Technology Co., LTDL112118AR, 99%. Make 1,000 ppm stock solution for the test of adsorption performance of zeolite.
Nickel nitrate hexahydrateShanghai Aladdin Bio-Chem Technology Co., LTDN108891AR, 98%. Make 1,000 ppm  stock solution for the test of adsorption performance of zeolite.
Nitric acidShanghai Aladdin Bio-Chem Technology Co., LTDN116238AR, 69.2%. Used as solvent in ICP-MS test.
Potassium dichromateShanghai Aladdin Bio-Chem Technology Co., LTDP112163AR, 99.8%. Make 1,000 ppm  stock solution for the test of adsorption performance of zeolite.
Silicon dioxideShanghai Aladdin Bio-Chem Technology Co., LTDS116482AR, 99%. For synthesis of zeolite.
Sodium (meta)arseniteSigma-aldrichS7400-100GAR, 90%. Make 1,000 ppm stock solution for the test of adsorption performance of zeolite.
Sodium hydroxideShanghai Aladdin Bio-Chem Technology Co., LTDS111502Pellets. For the synthesis of zeolite.
Zinc nitrate hexahydrateShanghai Aladdin Bio-Chem Technology Co., LTDZ111703AR, 99%. Make 1,000 ppm  stock solution for the test of adsorption performance of zeolite.
Equipment
Air-dry ovenShanghai Yiheng Technology Instrument Co.,LTD.DHG-9075AUsed for hydrothermal crystallization and drying of sample
Analytical balanceSartorius Scientific Instruments Co.LTDBSA224S-CWUsed for weighing samples
Centrifuge tubesNantong Supin Experimental Equipment Co., LTD
High speed centrifugeHunan Xiang Yi Laboratory Instrument Development Co.,LTDH1850Used for separation of solid and liquid samples
Multipoint magnetic stirrerIKA Equipment Co.,LTD.RT15Used for stirring samples
OscillatorChangzhou Guohua Electric Appliances Co.,LTD.SHA-BFor uniform mixing of samples
Syringe-driven filterTianjin Jinteng Experimental Equipment Co.,LTD.0.22 μm. For filtration.
Softwares
JADE 6.5Materials Data& (MDI)
MercuryCambridge Crystallographic Data Centre (CCDC)
Materials StudioAccelrys Software Inc.
Websites
Database of Zeolite Structures: http://www.iza-structure.org/databases/
ICSD: https://icsd.products.fiz-karlsruhe.de/en

Referanslar

  1. Qin, G., et al. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere. 267, 129205(2021).
  2. Xu, D. M., Fu, R. B., Liu, H. Q., Guo, X. P. Current knowledge from heavy metal pollution in Chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: A critical review. Journal of Cleaner Production. 286, 124989(2021).
  3. Dong, X., Ma, L. Q., Li, Y. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials. 190 (1-3), 909-915 (2011).
  4. El-Mekkawi, D. M., Selim, M. M. Removal of Pb2+ from water by using Na-Y zeolites prepared from Egyptian kaolins collected from different sources. Journal of Environmental Chemical Engineering. 2 (1), 723-730 (2014).
  5. Perego, C., Bagatin, R., Tagliabue, M., Vignola, R. Zeolites and related mesoporous materials for multi-talented environmental solutions. Microporous and Mesoporous Materials. 166, 37-49 (2013).
  6. Zheng, R., et al. Converting loess into zeolite for heavy metal polluted soil remediation based on "soil for soil-remediation" strategy. Journal of Hazardous Materials. 412, 125199(2021).
  7. Cheng, Y., et al. Feasible low-cost conversion of red mud into magnetically separated and recycled hybrid SrFe12O19@NaP1 zeolite as a novel wastewater adsorbent. Chemical Engineering Journal. 417, 128090(2021).
  8. Yang, D., et al. Remediation of Cu-polluted soil with analcime synthesized from engineering abandoned soils through green chemistry approaches. Journal of Hazardous Materials. 406, 124673(2021).
  9. Song, W., Li, G., Grassian, V. H., Larsen, S. C. Development of improved materials for environmental applications: Nanocrystalline NaY zeolites. Environmental Science & Technology. 39 (5), 1214-1220 (2005).
  10. Cheng, H., Reinhard, M. Sorption of trichloroethylene in hydrophobic micropores of dealuminated Y zeolites and natural minerals. Environmental Science & Technology. 40 (24), 7694-7701 (2006).
  11. Rayalu, S. S., Bansiwal, A. K., Meshram, S. U., Labhsetwar, N., Devotta, S. Fly ash based zeolite analogues: Versatile materials for energy and environment conservation. Catalysis Surveys from Asia. 10 (2), 74-88 (2006).
  12. Borel, M., et al. SDA-free hydrothermal synthesis of high-silica ultra-nanosized zeolite Y. Crystal Growth & Design. 17 (3), 1173-1179 (2017).
  13. Jin, Y., Li, L., Liu, Z., Zhu, S., Wang, D. Synthesis and characterization of low-cost zeolite NaA from coal gangue by hydrothermal method. Advanced Powder Technology. 32 (3), 791-801 (2021).
  14. Huiyu, S., Weiming, L., Zheng, Z. Current situation of comprehensive utilization of waste industrial molecular sieve and agricultural rice husk. Liaoning Chemical Industry. 49 (12), 1555(2020).
  15. Azizi, D., et al. Microporous and macroporous materials state-of-the-art of the technologies in zeolitization of aluminosilicate bearing residues from mining and metallurgical industries: A comprehensive review. Microporous and Mesoporous Materials. 318, 111029(2021).
  16. Yang, D., et al. Transferring waste red mud into ferric oxide decorated ANA-type zeolite for multiple heavy metals polluted soil remediation. Journal of Hazardous Materials. 424, Pt A 127244(2022).
  17. Kirdeciler, S. K., Akata, B. One pot fusion route for the synthesis of zeolite 4A using kaolin). Advanced Powder Technology. 31 (10), 4336-4343 (2020).
  18. Rubtsova, M., et al. Nanoarchitectural approach for synthesis of highly crystalline zeolites with a low Si/Al ratio from natural clay nanotubes. Microporous and Mesoporous Materials. 330, 111622(2022).
  19. Setthaya, N., Chindaprasirt, P., Pimraksa, K. Preparation of zeolite nanocrystals via hydrothermal and solvothermal synthesis using of rice husk ash and metakaolin. Materials Science Forum. 872, 242-247 (2016).
  20. Belviso, C., et al. Red mud as aluminium source for the synthesis of magnetic zeolite. Microporous and Mesoporous Materials. 270, 24-29 (2018).
  21. Baerlocher, C. Database of zeolite structures. , Available from: www.iza-structure.org/databases (2017).
  22. Zhao, Y., et al. Removal of ammonium from wastewater by pure form low-silica zeolite Y synthesized from halloysite mineral. Separation Science and Technology. 45 (8), 1066-1075 (2010).
  23. Meng, Q., Chen, H., Lin, J., Lin, Z., Sun, J. Zeolite A synthesized from alkaline assisted pre-activated halloysite for efficient heavy metal removal in polluted river water and industrial wastewater. Journal of Environmental Sciences (China). 56, 254-262 (2017).
  24. Wang, X., et al. Synthesis of substrate-bound Au nanowires via an active surface growth mechanism. Journal of Visualized Experiments. (137), e57808(2018).
  25. Asundi, A. S., et al. Understanding structure-property relationships of MoO3-promoted Rh catalysts for syngas conversion to alcohols. Journal of the American Chemical Society. 141 (50), 19655-19668 (2019).
  26. Zhu, Q., et al. Solvent-free crystallization of ZSM-5 zeolite on SiC foam as a monolith catalyst for biofuel upgrading. Chinese Journal of Catalysis. 41 (7), 1118-1124 (2020).
  27. Ghrear, T. M. A., et al. low-pressure, low-temperature microwave synthesis of ABW cesium aluminosilicate zeolite nanocatalyst in organotemplate-free hydrogel system. Materials Research Bulletin. 122, 110691(2020).

Access restricted. Please log in or start a trial to view this content.

Yeniden Basımlar ve İzinler

Bu JoVE makalesinin metnini veya resimlerini yeniden kullanma izni talebi

Izin talebi

Daha Fazla Makale Keşfet

evre BilimleriSay 184

This article has been published

Video Coming Soon

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır