Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This article presents a novel and convenient route to synthesize Fe2O3/faujasite (FAU)-type zeolite composite material from red soil. The detailed synthesis parameters have been finely tuned. The obtained composite material can be used for efficient heavy metal-contaminated water remediation, indicating its potential applications in environmental engineering.

Abstract

Heavy metal-polluted water is of great concern to human health and the eco-environment. In situ water remediation techniques enabled by highly efficient adsorption materials are of great importance in these circumstances. Among all the materials used in water remediation, iron-based nanomaterials and porous materials are of great interest, benefiting from their rich redox reactivity and adsorption function. Here, we developed a facile protocol to directly convert the widely spread red soil in south China to fabricate the Fe2O3/faujasite (FAU)-type zeolite composite material.

The detailed synthesis procedure and synthesis parameters, such as reaction temperature, reaction time, and the Si/Al ratio in the raw materials, have been carefully tuned. The as-synthesized composite materials show good adsorption capacity for typical heavy metal(loid) ions. With 0.001 g/mL Fe2O3/FAU-type zeolite composite material added to different heavy metal(loid)-polluted aqueous solutions (single type of heavy metal(loid) concentration: 1,000 mg/L [ppm]), the adsorption capacity was shown to be 172, 45, 170, 40, 429, 693, 94, and 133 mg/g for Cu (II), Cr (III), Cr (VI), As (III), Cd (II), Pb (II), Zn (II), and Ni (II) removal, respectively, which can be further expanded for heavy metal-polluted water and soil remediation.

Introduction

Heavy metal(loid)s from anthropogenic and natural activities are ubiquitous in the air, water, and soil environment1. They are of high mobility and toxicity, posing a potential health risk to human beings by direct contact or via food chain transportation2. Water is vital for the life of human beings since it is the feedstock of every family. Restoring water health is crucial. Therefore, it is of great importance to decrease the mobility and bioavailability of toxic heavy metal(loid)s in water. To maintain good health in water, water remediation materials, such as biochar, iron-based materials, and zeolite, play an essen....

Protocol

1. Raw material collection and treatment

  1. Red soil collection
    1. Collect the red soil. Remove the 30 cm top layer of the soil containing plants and residual organic matter.
      NOTE: In this experiment, the red soil was collected at the campus of Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China (113°59' E, 22°36' N).
  2. Red soil treatment
    1. Air-dry the collected red soil at room temperature and fil.......

Representative Results

Figure 1 illustrates the overall synthesis route of zeolite based on the "soil for soil remediation" strategy6. With a simple organic-free route, red soil can be converted to Fe2O3/FAU-type zeolite composite material without adding any Fe or Al source. The as-synthesized zeolite composite material exhibits excellent removal capacity for heavy metal-polluted water remediation and can be used for soil remediation.

Discussion

Zeolite is typically an aluminosilicate material. In theory, materials that are rich in silicate and aluminate can be chosen as raw materials for zeolite synthesis. The Si/Al ratio of the raw material must be similar to that of the selected type of zeolite to minimize the usage of additional silicon/aluminum sources6,8,16. The Si/Al ratio of FAU-type zeolite is 1.2, and the Si/Al ratio of red soil is 1.3. Therefore, red soil is .......

Acknowledgements

This work was financially supported by the Natural Science Funds for Distinguished Young Scholar of Guangdong Province, China, No. 2020B151502094; National Natural Science Foundation of China, No. 21777045 and 22106064; Foundation of Shenzhen Science, Technology and Innovation Commission, China, JCYJ20200109141625078; 2019 youth innovation project of Guangdong universities and colleges, China, No. 2019KQNCX133 and a special fund for the science and technology innovation strategy of Guangdong Province (PDJH2021C0033). This work was sponsored by the Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (No. ZDSYS20200421111401738), Guangdong Provin....

Materials

NameCompanyCatalog NumberComments
Chemicals
Cadmium nitrate tetrahydrateShanghai Aladdin Bio-Chem Technology Co., LTDC102676AR, 99%. Make 1,000 ppm  stock solution for the test of adsorption performance of zeolite.
Chromium(III) nitrate nonahydrateShanghai Aladdin Bio-Chem Technology Co., LTDC116446AR, 99%. Make 1,000 ppm  stock solution for the test of adsorption performance of zeolite.
Copper sulfate pentahydrateShanghai Aladdin Bio-Chem Technology Co., LTDC112396AR, 99%. Make 1,000 ppm  stock solution for the test of adsorption performance of zeolite.
Lead nitrateShanghai Aladdin Bio-Chem Technology Co., LTDL112118AR, 99%. Make 1,000 ppm stock solution for the test of adsorption performance of zeolite.
Nickel nitrate hexahydrateShanghai Aladdin Bio-Chem Technology Co., LTDN108891AR, 98%. Make 1,000 ppm  stock solution for the test of adsorption performance of zeolite.
Nitric acidShanghai Aladdin Bio-Chem Technology Co., LTDN116238AR, 69.2%. Used as solvent in ICP-MS test.
Potassium dichromateShanghai Aladdin Bio-Chem Technology Co., LTDP112163AR, 99.8%. Make 1,000 ppm  stock solution for the test of adsorption performance of zeolite.
Silicon dioxideShanghai Aladdin Bio-Chem Technology Co., LTDS116482AR, 99%. For synthesis of zeolite.
Sodium (meta)arseniteSigma-aldrichS7400-100GAR, 90%. Make 1,000 ppm stock solution for the test of adsorption performance of zeolite.
Sodium hydroxideShanghai Aladdin Bio-Chem Technology Co., LTDS111502Pellets. For the synthesis of zeolite.
Zinc nitrate hexahydrateShanghai Aladdin Bio-Chem Technology Co., LTDZ111703AR, 99%. Make 1,000 ppm  stock solution for the test of adsorption performance of zeolite.
Equipment
Air-dry ovenShanghai Yiheng Technology Instrument Co.,LTD.DHG-9075AUsed for hydrothermal crystallization and drying of sample
Analytical balanceSartorius Scientific Instruments Co.LTDBSA224S-CWUsed for weighing samples
Centrifuge tubesNantong Supin Experimental Equipment Co., LTD
High speed centrifugeHunan Xiang Yi Laboratory Instrument Development Co.,LTDH1850Used for separation of solid and liquid samples
Multipoint magnetic stirrerIKA Equipment Co.,LTD.RT15Used for stirring samples
OscillatorChangzhou Guohua Electric Appliances Co.,LTD.SHA-BFor uniform mixing of samples
Syringe-driven filterTianjin Jinteng Experimental Equipment Co.,LTD.0.22 μm. For filtration.
Softwares
JADE 6.5Materials Data& (MDI)
MercuryCambridge Crystallographic Data Centre (CCDC)
Materials StudioAccelrys Software Inc.
Websites
Database of Zeolite Structures: http://www.iza-structure.org/databases/
ICSD: https://icsd.products.fiz-karlsruhe.de/en

References

  1. Qin, G., et al. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere. 267, 129205 (2021).
  2. Xu, D. M., Fu, R. B., Liu, H. Q., Guo, X. P.

Explore More Articles

Red SoilFAU type ZeoliteFe2O3 CompositeHeavy Metal RemovalGreen ChemistryResource RecyclingSoil UtilizationWater Remediation

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved