Sign In

Electroplating of Thin Films

Overview

Source: Logan G. Kiefer, Andrew R. Falkowski, and Taylor D. Sparks, Department of Materials Science and Engineering, The University of Utah, Salt Lake City, UT

Electroplating is a process that uses electric current to reduce dissolved metal cations so that they form a thin coating on an electrode. Other thin film deposition techniques include chemical vapor deposition (CVD), spin coating, dip coating, and sputter deposition among others. CVD uses a gas-phase precursor of the element to be deposited. Spin coating spreads the liquid precursor centrifugally. Dip coating is similar to spin coating, but rather than spinning the liquid precursor, the substrate is completely submerged in it. Sputtering uses plasma to remove the desired material from a target, which then plates the substrate. Techniques such as CVD or sputtering produce very high quality films but do so very slowly and at high cost since these techniques typically require a vacuum atmosphere and small sample size. Electrodeposition doesn't rely on a vacuum atmosphere which greatly reduces the cost and increases scalability. In addition, relatively high rates of deposition can be achieved with electrodeposition.

Procedure
  1. Prepare Prussian Blue solution by mixing 50 mL of 0.05 M hydrochloric acid (HCl), 100 mL of 0.05 M potassium ferricyanide (K3[Fe(CN)6]), and 100 mL of 0.05 M iron(III) chloride hexahydrate (FeCl3.6H2O).
  2. Create anode by wrapping approximately 8 cm of nichrome wire (NiCr) into a tight coil.
  3. Prepare the cathode substrate by removing the outer coating that protects the conductive side of a 5X5 centimeter sheet of ITO coated PET.
  4. Build circuit by connecting the posit

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Results

Qualitatively, the ITO coated in Prussian Blue, will become transparent when a negative potential is applied as shown in Figure 1 below. This change can be reversed by applying a positive voltage.

Figure 1
Figure 1: Prussian Blue in its colored and bleached states.

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Application and Summary

Electrodeposition, as demonstrated in this experiment, allows for the modification of a materials surface properties within minimal change in volume. In the process of electrodeposition, an electric current is passed through an electrolytic solution between an anode and a cathode. The positively charged cations in the electrolyte solution are attracted to and deposited onto the negatively charged cathode. Once deposited, the atoms in the layer gain electrons through the process of reduction.

T

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Tags
ElectroplatingThin FilmsElectric CurrentMetal CationsElectrode SurfaceNanometerMicrometerSolar CellsBiosensor ProbesModified Surface PropertiesThin Film Deposition TechniquesElectroplating TechniqueGalvanic CellAnodeCathodeSalt BridgePorous MembraneElectrochemical CellsOxidationReduction Half cell ReactionsElectrical CurrentRedox ReactionsElectrolytic SolutionMetal Salts

Skip to...

0:07

Overview

1:07

Principles of Electroplating

2:49

Electroplating of Prussian Blue

4:37

UV-Vis Analysis of Film Thickness

5:46

Applications

7:33

Summary

Videos from this collection:

article

Now Playing

Electroplating of Thin Films

Materials Engineering

19.4K Views

article

Optical Materialography Part 1: Sample Preparation

Materials Engineering

13.0K Views

article

Optical Materialography Part 2: Image Analysis

Materials Engineering

8.7K Views

article

X-ray Photoelectron Spectroscopy

Materials Engineering

21.0K Views

article

X-ray Diffraction

Materials Engineering

85.6K Views

article

Focused Ion Beams

Materials Engineering

8.7K Views

article

Directional Solidification and Phase Stabilization

Materials Engineering

6.4K Views

article

Differential Scanning Calorimetry

Materials Engineering

35.5K Views

article

Thermal Diffusivity and the Laser Flash Method

Materials Engineering

13.0K Views

article

Analysis of Thermal Expansion via Dilatometry

Materials Engineering

15.4K Views

article

Electrochemical Impedance Spectroscopy

Materials Engineering

22.7K Views

article

Ceramic-matrix Composite Materials and Their Bending Properties

Materials Engineering

7.9K Views

article

Nanocrystalline Alloys and Nano-grain Size Stability

Materials Engineering

5.0K Views

article

Hydrogel Synthesis

Materials Engineering

23.1K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved