Sign In

Enzyme Kinetics

Enzymes speed up reactions by lowering the activation energy of the reactants. The speed at which the enzyme turns reactants into products is called the rate of reaction. Several factors impact the rate of reaction, including the number of available reactants. Enzyme kinetics is the study of how an enzyme changes the rate of a reaction.

Scientists typically study enzyme kinetics with a fixed amount of enzyme in the controlled environment of a test tube. When more reactant, or substrate, is added to a fixed amount of enzyme, the rate of the reaction increases as the enzyme can make more product. As a result, when the reaction rate is graphed against substrate concentration, increasing the substrate increases the reaction rate. However, once all the active sites of the enzyme are occupied, the reaction rate plateaus. The concentration of substrate at which the maximum rate of reaction is reached is called Vmax. The number of present enzyme molecules limits Vmax. If the amount of enzyme is increased, Vmax increases, but adding more substrate has no effect.

The graph of rate of reaction versus substrate concentration can reveal other important characteristics of an enzyme’s kinetics. The substrate concentration at which the reaction rate is halfway to Vmax (i.e., ½ Vmax) is called the Michaelis constant (Km). Km is a representation of the affinity between an enzyme and a substrate. Enzymes with a lower Km require less substrate to reach Vmax and therefore have a higher affinity for their substrate. Interestingly, for many enzymes, the value of Km is very close to the cellular concentration of the substrate. Near Km, slight changes in substrate concentration can significantly impact the reaction rate, so small changes in cellular substrate availability can impact the function of an entire biological pathway.

Not all enzymes produce the hyperbolic-shaped substrate-rate graph known as Michaelis Menten kinetics. Michaelis Menten kinetics assumes that the enzyme catalyzes a single substrate. Enzymes that are regulated allosterically have multiple active sites and tend to produce a sigmoid-shaped graph when the reaction rate is plotted versus the substrate concentration.

Tags
Enzyme KineticsSubstrate ConcentrationReaction RateVmaxEnzyme AffinityKmActivation EnergyRate Of ReactionReactantsEnzyme Changes The Rate Of A Reaction

From Chapter undefined:

article

Now Playing

Enzyme Kinetics

Related Videos

89.7K Views

article

What is Metabolism?

Related Videos

104.0K Views

article

First Law of Thermodynamics

Related Videos

55.7K Views

article

Second Law of Thermodynamics

Related Videos

52.0K Views

article

Kinetic Energy

Related Videos

36.3K Views

article

Potential Energy

Related Videos

36.2K Views

article

Free Energy

Related Videos

45.0K Views

article

Activation Energy

Related Videos

72.9K Views

article

Hydrolysis of ATP

Related Videos

70.2K Views

article

Phosphorylation

Related Videos

45.8K Views

article

Induced-fit Model

Related Videos

74.7K Views

article

Enzyme Inhibition

Related Videos

71.5K Views

article

Feedback Inhibition

Related Videos

50.7K Views

article

Allosteric Regulation

Related Videos

53.7K Views

article

Cofactors and Coenzymes

Related Videos

75.5K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved