Sign In

3.13 : Introduction to Enzyme Kinetics

Enzyme kinetics studies the rates of biochemical reactions. Scientists monitor the reaction rates for a particular enzymatic reaction at various substrate concentrations. Additional trials with inhibitors or other molecules that affect the reaction rate may also be performed.

The experimenter can then plot the initial reaction rate or velocity (Vo) of a given trial against the substrate concentration ([S]) to obtain a graph of the reaction properties. For many enzymatic reactions involving a single substrate, this data fits the Michaelis-Menten equation, an equation derived by Leonor Michaelis and Maud Menten.

Eq1

The equation estimates the maximum velocity (Vmax) and the Michaelis constant (KM) for the enzyme being studied and is based on the following assumptions:

  1. No product is present at the start of the reaction.
  2. The rate of enzyme-substrate complex formation equals the rate of dissociation and breakdown into products.
  3. The enzyme concentration is minimal compared to the substrate concentration.
  4. Only the initial reaction rates are measured.
  5. The enzyme is present either in the free form or in the enzyme-substrate complex.

Different rearrangements of the Michaelis-Menten equation, such as the Lineweaver-Burke, Eadie-Hofsteot, and Hanes-Woolf plots, are alternate ways to graph kinetic parameters. The Lineweaver-Burke or double reciprocal plot is often used to estimate the KM and the Vmax. The plot uses the reciprocals values of the x and y-axis from the Michaelis-Menten plot. Mathematically, the y-intercept equals 1/Vmax, and the x-intercept equals −1/KM.

The Lineweaver-Burke plot can be used to visually differentiate between inhibitor types – competitive, non-competitive, and uncompetitive. Different rearrangements of the Michaelis-Menten equation, such as the Eadie-Hofstee and Hanes-Woolf plots, are also used to determine kinetic parameters.

Tags
Enzyme KineticsReaction RateSubstrate ConcentrationMichaelis Menten EquationVmaxKMLineweaver Burke PlotEadie Hofstee PlotHanes Woolf PlotEnzyme substrate ComplexInhibitor TypesCompetitive InhibitionNon competitive InhibitionUncompetitive Inhibition

From Chapter 3:

article

Now Playing

3.13 : Introduction to Enzyme Kinetics

Energy and Catalysis

17.5K Views

article

3.1 : The First Law of Thermodynamics

Energy and Catalysis

4.7K Views

article

3.2 : The Second Law of Thermodynamics

Energy and Catalysis

4.3K Views

article

3.3 : Enthalpy within the Cell

Energy and Catalysis

4.7K Views

article

3.4 : Entropy within the Cell

Energy and Catalysis

8.2K Views

article

3.5 : An Introduction to Free Energy

Energy and Catalysis

6.6K Views

article

3.6 : Endergonic and Exergonic Reactions in the Cell

Energy and Catalysis

12.6K Views

article

3.7 : The Equilibrium Binding Constant and Binding Strength

Energy and Catalysis

8.2K Views

article

3.8 : Free Energy and Equilibrium

Energy and Catalysis

5.0K Views

article

3.9 : Non-equilibrium in the Cell

Energy and Catalysis

3.1K Views

article

3.10 : Oxidation and Reduction of Organic Molecules

Energy and Catalysis

5.1K Views

article

3.11 : Introduction to Enzymes

Energy and Catalysis

14.7K Views

article

3.12 : Enzymes and Activation Energy

Energy and Catalysis

10.2K Views

article

3.14 : Turnover Number and Catalytic Efficiency

Energy and Catalysis

9.0K Views

article

3.15 : Catalytically Perfect Enzymes

Energy and Catalysis

3.6K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved