Sign In

3.4 : Entropy within the Cell

A living cell's primary tasks of obtaining, transforming, and using energy to do work may seem simple. However, the second law of thermodynamics explains why these tasks are harder than they appear. None of the energy transfers in the universe are completely efficient. In every energy transfer, some amount of energy is lost in a form that is unusable. In most cases, this form is heat energy. Thermodynamically, heat energy is defined as the energy transferred from one system to another that is not work. For example, some energy is lost as heat energy during cellular metabolic reactions.

An important concept in physical systems is that of order and disorder. The more energy that is lost by a system to its surroundings, the less ordered and more random the system is. Scientists refer to the measure of randomness or disorder within a system as entropy. High entropy means high disorder and low energy. Molecules and chemical reactions have varying entropy as well. For example, entropy increases as molecules at a high concentration in one place diffuse and spread out.

Living things are highly ordered, requiring constant energy input to be maintained in a state of low entropy. As living systems take in energy-storing molecules and transform them through chemical reactions, they lose some amount of usable energy in the process because no reaction is completely efficient. They also produce waste and by-products that are not useful energy sources. This process increases the entropy of the system's surroundings. Since all energy transfers result in the loss of some usable energy, the second law of thermodynamics states that every energy transfer or transformation increases the entropy of the universe. Even though living things are highly ordered and maintain a state of low entropy, the entropy of the universe in total is constantly increasing due to the loss of usable energy with each energy transfer that occurs. Essentially, living things are in a continuous uphill battle against this constant increase in universal entropy.

This text is adapted from Openstax Biology 2e, Section 6.3 The Laws of Thermodynamics.

Tags
EntropyEnergy TransferThermodynamicsSecond Law Of ThermodynamicsDisorderOrderUsable EnergyHeat EnergyCellular MetabolismChemical ReactionsLiving SystemsUniversal Entropy

From Chapter 3:

article

Now Playing

3.4 : Entropy within the Cell

Energy and Catalysis

8.2K Views

article

3.1 : The First Law of Thermodynamics

Energy and Catalysis

4.7K Views

article

3.2 : The Second Law of Thermodynamics

Energy and Catalysis

4.3K Views

article

3.3 : Enthalpy within the Cell

Energy and Catalysis

4.7K Views

article

3.5 : An Introduction to Free Energy

Energy and Catalysis

6.6K Views

article

3.6 : Endergonic and Exergonic Reactions in the Cell

Energy and Catalysis

12.6K Views

article

3.7 : The Equilibrium Binding Constant and Binding Strength

Energy and Catalysis

8.2K Views

article

3.8 : Free Energy and Equilibrium

Energy and Catalysis

5.0K Views

article

3.9 : Non-equilibrium in the Cell

Energy and Catalysis

3.1K Views

article

3.10 : Oxidation and Reduction of Organic Molecules

Energy and Catalysis

5.1K Views

article

3.11 : Introduction to Enzymes

Energy and Catalysis

14.7K Views

article

3.12 : Enzymes and Activation Energy

Energy and Catalysis

10.2K Views

article

3.13 : Introduction to Enzyme Kinetics

Energy and Catalysis

17.5K Views

article

3.14 : Turnover Number and Catalytic Efficiency

Energy and Catalysis

9.0K Views

article

3.15 : Catalytically Perfect Enzymes

Energy and Catalysis

3.6K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved